1
|
Torre LA, Siegel RL and Jemal A: Lung
cancer statistics. Adv Exp Med Biol. 893:1–19. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Maconachie R, Mercer T, Navani N and
McVeigh G; Guideline Committee, : Lung cancer: Diagnosis and
management: Summary of updated NICE guidance. BMJ. 364:l10492019.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Hellmann MD, Li BT, Chaft JE and Kris MG:
Chemotherapy remains an essential element of personalized care for
persons with lung cancers. Ann Oncol. 27:1829–1835. 2016.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Lunacsek OE, Ravelo A, Coutinho AD, Hazard
SJ, Green MR, Willey J, Eaddy M and Goertz HP: First-line treatment
with bevacizumab and platinum doublet combination in Non-squamous
non-small cell lung cancer: A retrospective cohort study in US
oncology community practices. Drugs Real World Outcomes. 3:333–343.
2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Willers H, Azzoli CG, Santivasi WL and Xia
F: Basic mechanisms of therapeutic resistance to radiation and
chemotherapy in lung cancer. Cancer J. 19:200–207. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Mirzaei SA, Reiisi S, Ghiasi TP, Shekari
A, Aliakbari F, Azadfallah E and Elahian F: Broad blocking of MDR
efflux pumps by acetylshikonin and acetoxyisovalerylshikonin to
generate hypersensitive phenotype of malignant carcinoma cells. Sci
Rep. 8:34462018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wang Y, Zhang L, Yang J, Li B and Wang J:
CDH13 promoter methylation regulates cisplatin resistance of
non-small cell lung cancer cells. Oncol Lett. 16:5715–5722.
2018.PubMed/NCBI
|
8
|
Rose MC, Kostyanovskaya E and Huang RS:
Pharmacogenomics of cisplatin sensitivity in non-small cell lung
cancer. Genomics Proteomics Bioinformatics. 12:198–209. 2014.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhou BG, Wei CS, Zhang S, Zhang Z and Gao
HM: Matrine reversed multidrug resistance of breast cancer
MCF-7/ADR cells through PI3K/AKT signaling pathway. J Cell Biochem.
119:3885–3891. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Pang L, Lu J, Huang J, Xu C, Li H, Yuan G,
Cheng X and Chen J: Upregulation of miR-146a increases cisplatin
sensitivity of the non-small cell lung cancer A549 cell line by
targeting JNK-2. Oncol Lett. 14:7745–7752. 2017.PubMed/NCBI
|
11
|
Cui J, Jiang W, Wang S, Wang L and Xie K:
Role of Wnt/β-catenin signaling in drug resistance of pancreatic
cancer. Curr Pharm Des. 18:2464–2471. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Xu N, Shen C, Luo Y, Xia L, Xue F, Xia Q
and Zhang J: Upregulated miR-130a increases drug resistance by
regulating RUNX3 and Wnt signaling in cisplatin-treated HCC cell.
Biochem Biophys Res Commun. 425:468–472. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Gao Y, Liu Z, Zhang X, He J, Pan Y, Hao F,
Xie L, Li Q, Qiu X and Wang E: Inhibition of cytoplasmic GSK-3b
increases cisplatin resistance through activation of Wnt/β-catenin
signaling in A549/DDP cells. Cancer Lett. 336:231–239. 2013.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Xia Y, He Z, Liu B, Wang P and Chen Y:
Downregulation of Meg3 enhances cisplatin resistance of lung cancer
cells through activation of the WNT/β-catenin signaling pathway.
Mol Med Rep. 12:4530–4537. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhang Q, Zhang B, Sun L, Yan Q, Zhang Y,
Zhang Z, Su Y and Wang C: MicroRNA-130b targets PTEN to induce
resistance to cisplatin in lung cancer cells by activating
Wnt/β-catenin pathway. Cell Biochem Funct. 36:194–202. 2018.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Hanif IM, Hanif IM, Shazib MA, Ahmad KA
and Pervaiz S: Casein Kinase II: An attractive target for
anti-cancer drug design. Int J Biochem Cell Biol. 42:1602–1605.
2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Litchfield DW: Protein kinase CK2:
Structure, regulation and role in cellular decisions of life and
death. Biochem J. 369:1–15. 2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zou J, Luo H, Zeng Q, Dong Z, Wu D and Liu
L: Protein kinase CK2α is overexpressed in colorectal cancer and
modulates cell proliferation and invasion via regulating
EMT-related genes. J Transl Med. 9:972011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Benavent AF, Capobianco CS, Garona J,
Cirigliano SM, Perera Y, Urtreger AJ, Perea SE, Alonso DF and
Farina HG: CIGB-300, an anti-CK2 peptide, inhibits angiogenesis,
tumor cell invasion and metastasis in lung cancer models. Lung
Cancer. 107:14–21. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Liu Y, Amin EB, Mayo MW, Chudgar NP,
Bucciarelli PR, Kadota K, Adusumilli PS and Jones DR: CK2α′ drives
lung cancer metastasis by targeting BRMS1 nuclear export and
degradation. Cancer Res. 76:2675–2686. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Shimada K, Anai S, Marco DA, Fujimoto K
and Konishi N: Cyclooxygenase 2-dependent and independent
activation of Akt through casein kinase 2α contributes to human
bladder cancer cell survival. BMC Urol. 11:82011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang S, Yang YL, Wang Y, You B, Dai Y,
Chan G, Hsieh D, Kim IJ, Fang LT, Au A, et al: CK2α, over-expressed
in human malignant pleural mesothelioma, regulates the Hedgehog
signaling pathway in mesothelioma cells. J Exp Clin Cancer Res.
33:932014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang HX, Jiang SS, Zhang XF, Zhou ZQ, Pan
QZ, Chen CL, Zhao JJ, Tang Y, Xia JC and Weng DS: Protein kinase
CK2α catalytic subunit is overexpressed and serves as an
unfavorable prognostic marker in primary hepatocellular carcinoma.
Oncotarget. 6:34800–34817. 2015.PubMed/NCBI
|
24
|
Bae JS, Park SH, Kim KM, Kwon KS, Kim CY,
Lee HK, Park BH, Park HS, Lee H, Moon WS, et al: CK2α
phosphorylates DBC1 and is involved in the progression of gastric
carcinoma and predicts poor survival of gastric carcinoma patients.
Int J Cancer. 136:797–809. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Dowling JE, Alimzhanov M, Bao L, Chuaqui
C, Denz CR, Jenkins E, Larsen NA, Lyne PD, Pontz T, Ye Q, et al:
Potent and selective CK2 kinase inhibitors with effects on Wnt
pathway signaling in vivo. ACS Med Chem Lett. 7:300–305. 2016.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Seldin DC, Landesman-Bollag E, Farago M,
Currier N, Lou D and Dominguez I: CK2 as a positive regulator of
Wnt signalling and tumourigenesis. Mol Cell Biochem. 274:63–67.
2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lee YN, Gao Y and Wang HY: Differential
mediation of the Wnt canonical pathway by mammalian Dishevelleds-1,
−2 and −3. Cell Signal. 20:443–452. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Luo K, Gu X, Liu J, Zeng G, Peng L, Huang
H, Jiang M, Yang P, Li M, Yang Y, et al: Inhibition of disheveled-2
resensitizes cisplatin-resistant lung cancer cells through
down-regulating Wnt/β-catenin signaling. Exp Cell Res. 347:105–113.
2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Song DH, Sussman DJ and Seldin DC:
Endogenous protein kinase CK2 participates in Wnt signaling in
mammary epithelial cells. J Biol Chem. 275:23790–23797. 2000.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Clevers H and Nusse R: Wnt/β-catenin
signaling and disease. Cell. 149:1192–1205. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Smalley MJ, Signoret N, Robertson D,
Tilley A, Hann A, Ewan K, Ding Y, Paterson H and Dale TC:
Dishevelled (Dvl-2) activates canonical Wnt signalling in the
absence of cytoplasmic puncta. J Cell Sci. 118:5279–5289. 2005.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Lee KH, Johmura Y, Yu LR, Park JE, Gao Y,
Bang JK, Zhou M, Veenstra TD, Yeon Kim B and Lee KS: Identification
of a novel Wnt5a-CK1ε-Dvl2-Plk1-mediated primary cilia disassembly
pathway. EMBO J. 31:3104–3117. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Cadigan KM and Waterman ML: TCF/LEFs and
Wnt signaling in the nucleus. Cold Spring Harb Perspect Biol.
4(pii): a0079062012.PubMed/NCBI
|
35
|
Angers S and Moon RT: Proximal events in
Wnt signal transduction. Nat Rev Mol Cell Biol. 10:468–477. 2009.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Liu C, Gong Q, Chen T, Lv J, Feng Z, Liu P
and Deng Z: Treatment with 20(S)-ginsenoside Rg3 reverses multidrug
resistance in A549/DDP xenograft tumors. Oncol Lett. 15:4376–4382.
2018.PubMed/NCBI
|
37
|
Wu Q, Yang Z, Nie Y, Shi Y and Fan D:
Multi-drug resistance in cancer chemotherapeutics: Mechanisms and
lab approaches. Cancer Lett. 347:159–166. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Gottesman MM: Mechanisms of cancer drug
resistance. Annu Rev Med. 53:615–627. 2002. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ku MJ, Park JW, Ryu BJ, Son YJ, Kim SH and
Lee SY: CK2 inhibitor CX4945 induces sequential inactivation of
proteins in the signaling pathways related with cell migration and
suppresses metastasis of A549 human lung cancer cells. Bioorg Med
Chem Lett. 23:5609–5613. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wei H, Lu W, Li M, Zhang Q and Lu S:
Concomitance of P-gp/LRP expression with EGFR mutations in exons 19
and 21 in non-small cell lung cancers. Yonsei Med J. 57:50–57.
2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Backos DS, Franklin CC and Reigan P: The
role of glutathione in brain tumor drug resistance. Biochem
Pharmacol. 83:1005–1012. 2012. View Article : Google Scholar : PubMed/NCBI
|
42
|
Huang H, Liu J, Meng Q and Niu G:
Multidrug resistance protein and topoisomerase 2 alpha expression
in non-small cell lung cancer are related with brain metastasis
postoperatively. Int J Clin Exp Pathol. 8:11537–11542.
2015.PubMed/NCBI
|
43
|
Javid J, Mir R, Mirza M, Imtiyaz A,
Prasant Y, Mariyam Z, Julka PK, Mohan A, Lone M, Ray PC and Saxena
A: CC genotype of anti-apoptotic gene BCL-2 (−938 C/A) is an
independent prognostic marker of unfavorable clinical outcome in
patients with non-small-cell lung cancer. Clin Transl Oncol.
17:289–295. 2015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Kelland L: The resurgence of
platinum-based cancer chemotherapy. Nat Rev Cancer. 7:573–584.
2007. View Article : Google Scholar : PubMed/NCBI
|
45
|
Macdonald BT, Tamai K and He X:
Wnt/beta-catenin signaling: Components, mechanisms, and diseases.
Dev Cell. 17:9–26. 2009. View Article : Google Scholar : PubMed/NCBI
|
46
|
Nusse R and Clevers H: Wnt/β-catenin
signaling, disease and emerging therapeutic modalities. Cell.
169:985–999. 2017. View Article : Google Scholar : PubMed/NCBI
|
47
|
Kim J and Kim SH: Druggability of the CK2
inhibitor CX-4945 as an anticancer drug and beyond. Arch Pharm Res.
35:1293–1296. 2012. View Article : Google Scholar : PubMed/NCBI
|
48
|
Kim J and Hwan KS: CK2 inhibitor CX-4945
blocks TGF-β1-induced epithelial-to-mesenchymal transition in A549
human lung adenocarcinoma cells. PLoS One. 8:e743422013. View Article : Google Scholar : PubMed/NCBI
|
49
|
So KS, Rho JK, Choi YJ, Kim SY, Choi CM,
Chun YJ and Lee JC: AKT/mTOR down-regulation by CX-4945, a CK2
inhibitor, promotes apoptosis in chemorefractory non-small cell
lung cancer cells. Anticancer Res. 35:1537–1542. 2015.PubMed/NCBI
|