1
|
Louis DN, Perry A, Reifenberger G, von
Deimling A, Figarellabranger D, Cavenee WK, Ohgaki H, Wiestler OD,
Kleihues P and Ellison DW: The 2016 World Health Organization
Classification of tumors of the central nervous system: A summary.
Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ostrom QT, Gittleman H, Xu J, Kromer C,
Wolinsky Y, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical
report: Primary brain and other central nervous system tumors
diagnosed in the United States in 2009–2013. Neuro Oncol. 18
(Suppl_5):v1–v75. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
van den Bent MJ: Practice changing mature
results of RTOG study 9802: Another positive PCV trial makes
adjuvant chemotherapy part of standard of care in low-grade glioma.
Neuro Oncol. 16:1570–1574. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Behin A, Hoangxuan K, Carpentier AF and
Delattre JY: Primary brain tumours in adults. Lancet.
379:1984–1996. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Roszkowski K, Furtak J, Zurawski B,
Szylberg T and Lewandowska M: Potential role of methylation marker
in glioma supporting clinical decisions. Int J Mol Sci.
17:18762016. View Article : Google Scholar
|
6
|
Yuan G, Niu L, Zhang Y, Wang X, Ma K, Yin
H, Dai J, Zhou W and Pan Y: Defining optimal cutoff value of MGMT
promoter methylation by ROC analysis for clinical setting in
glioblastoma patients. J Neurooncol. 133:193–201. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Houillier C, Wang X, Kaloshi G, Mokhtari
K, Guillevin R, Laffaire J, Paris S, Boisselier B, Idbaih A,
Laigle-Donadey F, et al: IDH1 or IDH2 mutations predict longer
survival and response to temozolomide in low-grade gliomas.
Neurology. 75:1560–1566. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Felsberg J, Wolter M, Seul H, Friedensdorf
B, Göppert M, Sabel MC and Reifenberger G: Rapid and sensitive
assessment of the IDH1 and IDH2 mutation status in cerebral gliomas
based on DNA pyrosequencing. Acta Neuropathol. 119:501–507. 2010.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Delgado-López PD and Corrales-García EM:
Survival in glioblastoma: A review on the impact of treatment
modalities. Clin Transl Oncol. 18:1062–1071. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Phan K, Ng W, Lu VM, McDonald KL, Fairhall
J, Reddy R and Wilson P: Association between IDH1 and IDH2
mutations and preoperative seizures in patients with low-grade
versus high-grade glioma: A systematic review and meta-analysis.
World Neurosurg. 111:e539–e545. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sun L, Hui AM, Su Q, Vortmeyer A,
Kotliarov Y, Pastorino S, Passaniti A, Menon J, Walling J, Bailey
R, et al: Neuronal and glioma-derived stem cell factor induces
angiogenesis within the brain. Cancer Cell. 9:287–300. 2006.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Chambless LB, Kistka HM, Parker SL,
Hassam-Malani L, Mcgirt MJ and Thompson RC: The relative value of
postoperative versus preoperative Karnofsky Performance Scale
scores as a predictor of survival after surgical resection of
glioblastoma multiforme. J Neurooncol. 121:359–364. 2015.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Li G, Shen J, Cao J, Zhou G, Lei T, Sun Y,
Gao H, Ding Y, Xu W, Zhan Z, et al: Alternative splicing of human
telomerase reverse transcriptase in gliomas and its modulation
mediated by CX-5461. J Exp Clin Cancer Res. 37:782018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Takano S, Ishikawa E, Sakamoto N, Matsuda
M, Akutsu H, Noguchi M, Kato Y, Yamamoto T and Matsumura A:
Immunohistochemistry on IDH 1/2, ATRX, p53 and Ki-67 substitute
molecular genetic testing and predict patient prognosis in grade
III adult diffuse gliomas. Brain Tumor Pathol. 33:107–116. 2016.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Gulluoglu S, Tuysuz EC and Sahin M:
Simultaneous miRNA and mRNA transcriptome profiling of glioblastoma
samples reveals a novel set of OncomiR candidates and their target
genes. Brain Res 1700. 199–210. 2018.
|
16
|
Valder CR, Liu JJ, Song YH and Luo ZD:
Coupling gene chip analyses and rat genetic variances in
identifying potential target genes that may contribute to
neuropathic allodynia development. J Neurochem. 87:560–573. 2003.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Parkinson H, Sarkans U, Kolesnikov N,
Abeygunawardena N, Burdett T, Dylag M, Emam I, Farne A, Hastings E,
Holloway E, et al: ArrayExpress update-an archive of microarray and
high-throughput sequencing-based functional genomics experiments.
Nucleic Acids Res. 39(Database Issue): D1002–D1004. 2011.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Sedlazeck FJ, Lee H, Darby CA and Schatz
MC: Piercing the dark matter: Bioinformatics of long-range
sequencing and mapping. Nat Rev Genet. 19:329–346. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Dalal S, Zha Q, Daniels CR, Steagall RJ,
Joyner WL, Gadeau AP, Singh M and Singh K: Osteopontin stimulates
apoptosis in adult cardiac myocytes via the involvement of CD44
receptors, mitochondrial death pathway, and endoplasmic reticulum
stress. Am J Physiol Heart Circ Physiol. 306:H1182–H1191. 2014.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Feng C, Zhang Y, Yin J, Li J, Abounader R
and Zuo Z: Regulatory factor X1 is a new tumor suppressive
transcription factor that acts via direct downregulation of CD44 in
glioblastoma. Neuro Oncol. 16:1078–1085. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Monaghan M, Mulligan KA, Gillespie H,
Trimble A, Winter P, Johnston PG and McCormick D: Epidermal growth
factor up-regulates CD44-dependent astrocytoma invasion in vitro. J
Pathol. 192:519–525. 2015. View Article : Google Scholar
|
22
|
Zhao LH, Lin QL, Wei J, Huai YL, Wang KJ
and Yan HY: CD44v6 expression in patients with stage II or stage
III sporadic colorectal cancer is superior to CD44 expression for
predicting progression. Int J Clin Exp Pathol. 8:692–701.
2015.PubMed/NCBI
|
23
|
Xu Y, Stamenkovic I and Yu Q: CD44
attenuates activation of the Hippo signaling pathway and is a prime
therapeutic target for glioblastoma. Cancer Res. 70:2455–2464.
2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wei KC, Huang CY, Chen PY, Feng LY, Wu TW,
Chen SM, Tsai HC, Lu YJ, Tsang NM, Tseng CK, et al: Evaluation of
the prognostic value of CD44 in glioblastoma multiforme. Anticancer
Res. 30:253–259. 2010.PubMed/NCBI
|
25
|
Fu J, Yang QY, Sai K, Chen FR, Pang JC, Ng
HK, Kwan AL and Chen ZP: TGM2 inhibition attenuates ID1 expression
in CD44-high glioma-initiating cells. Neuro Oncol. 15:1353–1365.
2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Nishikawa M, Inoue A, Ohnishi T, Kohno S,
Ohue S, Matsumoto S, Suehiro S, Yamashita D, Ozaki S, Watanabe H,
et al: Significance of Glioma Stem-Like cells in the tumor
periphery that express high levels of CD44 in tumor invasion, early
progression, and poor prognosis in glioblastoma. Stem Cells Int
2018. 53870412018.
|
27
|
Zeng Y, Wodzenski D, Gao D, Shiraishi T,
Terada N, Li Y, Vander Griend DJ, Luo J, Kong C, Getzenberg RH and
Kulkarni P: Stress-response protein RBM3 attenuates the stem-like
properties of prostate cancer cells by interfering with CD44
variant splicing. Cancer Res. 73:4123–4133. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Guo JY, Hsu HS, Tyan SW, Li FY, Shew JY,
Lee WH and Chen JY: Serglycin in tumor microenvironment promotes
non-small cell lung cancer aggressiveness in a CD44-dependent
manner. Oncogene. 36:2457–2471. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhao S, Chen C, Chang K, Karnad A,
Jagirdar J, Kumar AP and Freeman JW: CD44 expression level and
isoform contributes to pancreatic cancer cell plasticity,
invasiveness and response to therapy. Clin Cancer Res.
22:5592–5604. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang HH, Liao CC, Chow NH, Huang LL,
Chuang JI, Wei KC and Shin JW: Whether CD44 is an applicable marker
for glioma stem cells. Am J Transl Res. 9:4785–4806.
2017.PubMed/NCBI
|