Prospective applications of microRNAs in oral cancer (Review)
- Authors:
- Chuan Fang
- Yadong Li
-
Affiliations: Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China - Published online on: August 16, 2019 https://doi.org/10.3892/ol.2019.10751
- Pages: 3974-3984
-
Copyright: © Fang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Montero PH and Patel SG: Cancer of the oral cavity. Surg Oncol Clin N Am. 24:491–508. 2015. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhong LP, Zhang CP, Ren GX, Guo W, William WN Jr, Sun J, Zhu HG, Tu WY, Li J, Cai YL, et al: Randomized phase III trial of induction chemotherapy with docetaxel, cisplatin, and fluorouracil followed by surgery versus up-front surgery in locally advanced resectable oral squamous cell carcinoma. J Clin Oncol. 31:744–751. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sadighi S, Keyhani A, Harirchi I, Garajei A, Aghili M, Kazemian A, Motiee Langroudi M, Zendehdel K and Nikparto N: Neoadjuvant chemotherapy for locally advanced squamous carcinoma of oral cavity: A pilot study. Acta Med Iran. 53:380–386. 2015.PubMed/NCBI | |
Bossi P, Lo Vullo S, Guzzo M, Mariani L, Granata R, Orlandi E, Locati L, Scaramellini G, Fallai C and Licitra L: Preoperative chemotherapy in advanced resectable OCSCC: Long-term results of a randomized phase III trial. Ann Oncol. 25:462–466. 2014. View Article : Google Scholar : PubMed/NCBI | |
Valdez JA and Brennan MT: Impact of oral cancer on quality of life. Dent Clin North Am. 62:143–154. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rupaimoole R and Slack FJ: MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar : PubMed/NCBI | |
Anastasiadou E, Jacob LS and Slack FJ: Non-coding RNA networks in cancer. Nat Rev Cancer. 18:5–18. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Cao XY, Li YN, Qiu YY, Li YN, Li W and Wang H: Reversal of cisplatin resistance by microRNA-139-5p-independent RNF2 downregulation and MAPK inhibition in ovarian cancer. Am J Physiol Cell Physiol. 315:C225–C235. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gong R, Lv X and Liu F: MiRNA-17 encoded by the miR-17-92 cluster increases the potential for steatosis in hepatoma cells by targeting CYP7A1. Cell Mol Biol Lett. 23:162018. View Article : Google Scholar : PubMed/NCBI | |
Ruhl R, Rana S, Kelley K, Espinosa-Diez C, Hudson C, Lanciault C, Thomas CR Jr, Liana Tsikitis V and Anand S: MicroRNA-451a regulates colorectal cancer proliferation in response to radiation. BMC Cancer. 18:5172018. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Sun Y, Wang H, Li H, Zhang M, Zhou L, Meng X, Wu Y, Liu P, Liu X, et al: MicroRNA-221 induces autophagy through suppressing HDAC6 expression and promoting apoptosis in pancreatic cancer. Oncol Lett. 16:7295–7301. 2018.PubMed/NCBI | |
Anastasiadou E, Stroopinsky D, Alimperti S, Jiao AL, Pyzer AR, Cippitelli C, Pepe G, Severa M, Rosenblatt J, Etna MP, et al: Epstein-Barr virus-encoded EBNA2 alters immune checkpoint PD-L1 expression by downregulating miR-34a in B-cell lymphomas. Leukemia. 33:132–147. 2019. View Article : Google Scholar : PubMed/NCBI | |
Anastasiadou E, Faggioni A, Trivedi P and Slack FJ: The nefarious nexus of noncoding RNAs in cancer. Int J Mol Sci. 19:20722018. View Article : Google Scholar | |
Lu L, Xue X, Lan J, Gao Y, Xiong Z, Zhang H, Jiang W, Song W and Zhi Q: MicroRNA-29a upregulates MMP2 in oral squamous cell carcinoma to promote cancer invasion and anti-apoptosis. Biomed Pharmacother. 68:13–19. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu Q, Sun Q, Zhang J, Yu J, Chen W and Zhang Z: Downregulation of miR-153 contributes to epithelial-mesenchymal transition and tumor metastasis in human epithelial cancer. Carcinogenesis. 34:539–549. 2013. View Article : Google Scholar : PubMed/NCBI | |
Arantes LMRB, De Carvalho AC, Melendez ME and Lopes Carvalho A: Serum, plasma and saliva biomarkers for head and neck cancer. Expert Rev Mol Diagn. 18:85–112. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chai L, Yuan Y, Chen C, Zhou J and Wu Y: The role of long non-coding RNA ANRIL in the carcinogenesis of oral cancer by targeting miR-125a. Biomed Pharmacother. 103:38–45. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ha M and Kim VN: Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S and Kim VN: The nuclear RNase III Drosha initiates microRNA processing. Nature. 425:415–419. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K and Shiekhattar R: TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 436:740–744. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yeom KH, Lee Y, Han J, Suh MR and Kim VN: Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res. 34:4622–4629. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen HC, Tseng YK, Chi CC, Chen YH, Yang CM, Huang SJ, Lee YC, Liou HH, Tsai KW and Ger LP: Genetic variants in microRNA-146a (C>G) and microRNA-1269b (G>C) are associated with the decreased risk of oral premalignant lesions, oral cancer, and pharyngeal cancer. Arch Oral Biol. 72:21–32. 2016. View Article : Google Scholar : PubMed/NCBI | |
Philipone E, Yoon AJ, Wang S, Shen J, Ko YC, Sink JM, Rockafellow A, Shammay NA and Santella RM: MicroRNAs-208b-3p, 204–5p, 129-2-3p and 3065-5p as predictive markers of oral leukoplakia that progress to cancer. Am J Cancer Res. 6:1537–1546. 2016.PubMed/NCBI | |
Aghbari SMH, Gaafar SM, Shaker OG, Ashiry SE and Zayed SO: Evaluating the accuracy of microRNA-27b and microRNA-137 as biomarkers of activity and potential malignant transformation in oral lichen planus patients. Arch Dermatol Res. 310:209–220. 2018. View Article : Google Scholar : PubMed/NCBI | |
Harrandah AM, Fitzpatrick SG, Smith MH, Wang D, Cohen DM and Chan EK: MicroRNA-375 as a biomarker for malignant transformation in oral lesions. Oral Surg Oral Med Oral Pathol Oral Radiol. 122:743–752.e1. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu CJ, Lin SC, Yang CC, Cheng HW and Chang KW: Exploiting salivary miR-31 as a clinical biomarker of oral squamous cell carcinoma. Head Neck. 34:219–214. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zahran F, Ghalwash D, Shaker O, Al-Johani K and Scully C: Salivary microRNAs in oral cancer. Oral Dis. 21:739–747. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ries J, Baran C, Wehrhan F, Weber M, Neukam FW, Krautheim-Zenk A and Nkenke E: Prognostic significance of altered miRNA expression in whole blood of OSCC patients. Oncol Rep. 37:3467–3474. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Ren Y, Liu R, Ma J, Shi Y, Zhang L and Bu R: MiR-195-5p suppresses the proliferation, migration, and invasion of oral squamous cell carcinoma by targeting TRIM14. Biomed Res Int. 2017:73781482017. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Li Y, Hou D, Shi Q, Yang S and Li Q: MicroRNA-375 inhibits growth and enhances radiosensitivity in oral squamous cell carcinoma by targeting insulin like growth factor 1 receptor. Cell Physiol Biochem. 42:2105–2117. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu P, Li Y, Yang S, Yang H, Tang J and Li M: Micro-ribonucleic acid 143 (MiR-143) inhibits oral squamous cell carcinoma (OSCC) cell migration and invasion by downregulation of phospho-c-Met through targeting CD44 v3. Oral Surg Oral Med Oral Pathol Oral Radiol. 120:43–51. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cao J, Guo T, Dong Q, Zhang J and Li Y: MiR-26b is downregulated in human tongue squamous cell carcinoma and regulates cell proliferation and metastasis through a COX-2-dependent mechanism. Oncol Rep. 33:974–980. 2015. View Article : Google Scholar : PubMed/NCBI | |
Baba O, Hasegawa S, Nagai H, Uchida F, Yamatoji M, Kanno NI, Yamagata K, Sakai S, Yanagawa T and Bukawa H: MicroRNA-155-5p is associated with oral squamous cell carcinoma metastasis and poor prognosis. J Oral Pathol Med. 45:248–255. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Yang Y, Zhao H, Yang X, Luo Y, Ren Y, Liu W and Li N: Serum miR-483-5p: A novel diagnostic and prognostic biomarker for patients with oral squamous cell carcinoma. Tumour Biol. 37:447–453. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hung KF, Liu CJ, Chiu PC, Lin JS, Chang KW, Shih WY, Kao SY and Tu HF: MicroRNA-31 upregulation predicts increased risk of progression of oral potentially malignant disorder. Oral Oncol. 53:42–47. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lu MY, Yu CC, Chen PY, Hsieh PL, Peng CY, Liao YW, Yu CH and Lin KH: MiR-200c inhibits the arecoline-associated myofibroblastic transdifferentiation in buccal mucosal fibroblasts. J Formos Med Assoc. 117:791–797. 2018. View Article : Google Scholar : PubMed/NCBI | |
Brito JA, Gomes CC, Guimarães AL, Campos K and Gomez RS: Relationship between microRNA expression levels and histopathological features of dysplasia in oral leukoplakia. J Oral Pathol Med. 43:211–216. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nylander E, Ebrahimi M, Wahlin YB, Boldrup L and Nylander K: Changes in miRNA expression in sera and correlation to duration of disease in patients with multifocal mucosal lichen planus. J Oral Pathol Med. 41:86–89. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ren W, Wang X, Gao L, Li S, Yan X, Zhang J, Huang C, Zhang Y and Zhi K: MiR-21 modulates chemosensitivity of tongue squamous cell carcinoma cells to cisplatin by targeting PDCD4. Mol Cell Biochem. 390:253–262. 2014. View Article : Google Scholar : PubMed/NCBI | |
Arnaoutakis D, Bishop J, Westra W and Califano JA: Recurrence patterns and management of oral cavity premalignant lesions. Oral Oncol. 49:814–817. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mortazavi H, Baharvand M and Mehdipour M: Oral potentially malignant disorders: An overview of more than 20 entities. J Dent Res Dent Clin Dent Prospects. 8:6–14. 2014.PubMed/NCBI | |
Wu X, Gong Z, Sun L, Ma L and Wang Q: MicroRNA-802 plays a tumour suppressive role in tongue squamous cell carcinoma through directly targeting MAP2K4. Cell Prolif. Mar 20–2017.(Epub ahead of print). doi: 10.1111/cpr.12336. View Article : Google Scholar | |
Sun L, Liang J, Wang Q, Li Z, Du Y and Xu X: MicroRNA-137 suppresses tongue squamous carcinoma cell proliferation, migration and invasion. Cell Prolif. 49:628–635. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Li F and Zhou X: MiR-204-5p regulates cell proliferation and metastasis through inhibiting CXCR4 expression in OSCC. Biomed Pharmacother. 82:202–207. 2016. View Article : Google Scholar : PubMed/NCBI | |
Supic G, Zeljic K, Rankov AD, Kozomara R, Nikolic A, Radojkovic D and Magic Z: MiR-183 and miR-21 expression as biomarkers of progression and survival in tongue carcinoma patients. Clin Oral Investig. 22:401–409. 2018. View Article : Google Scholar : PubMed/NCBI | |
Weng J, Zhang H, Wang C, Liang J, Chen G, Li W, Tang H and Hou J: MiR-373-3p targets DKK1 to promote EMT-induced metastasis via the Wnt/β-catenin pathway in tongue squamous cell carcinoma. Biomed Res Int. 2017:60109262017. View Article : Google Scholar : PubMed/NCBI | |
Fu S, Chen HH, Cheng P, Zhang CB and Wu Y: MiR-155 regulates oral squamous cell carcinoma Tca8113 cell proliferation, cycle, and apoptosis via regulating p27Kip1. Eur Rev Med Pharmacol Sci. 21:937–944. 2017.PubMed/NCBI | |
Wang J, Wang W, Li J, Wu L, Song M and Meng Q: MiR-182 activates the Ras-MEK-ERK pathway in human oral cavity squamous cell carcinoma by suppressing RASA1 and SPRED1. Onco Targets Ther. 10:667–679. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Hu C, Chi J, Li J, Peng C, Yun X, Li D, Yu Y, Li Y, Gao M and Zheng X: MiR-24 promotes the proliferation, migration and invasion in human tongue squamous cell carcinoma by targeting FBXW7. Oncol Rep. 36:1143–1149. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu MD, Wu H, Wang S, Pang P, Jin S, Sun CF and Liu FY: MiR-1275 promotes cell migration, invasion and proliferation in squamous cell carcinoma of head and neck via up-regulating IGF-1R and CCR7. Gene. 646:1–7. 2018. View Article : Google Scholar : PubMed/NCBI | |
El-Hefnawy T, Raja S, Kelly L, Bigbee WL, Kirkwood JM, Luketich JD and Godfrey TE: Characterization of amplifiable, circulating RNA in plasma and its potential as a tool for cancer diagnostics. Clin Chem. 50:564–573. 2014. View Article : Google Scholar | |
Park NJ, Li Y, Yu T, Brinkman BM and Wong DT: Characterization of RNA in saliva. Clin Chem. 52:988–994. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tsui NB, Ng EK and Lo YM: Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem. 48:1647–1653. 2002.PubMed/NCBI | |
Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E and Wong DT: Salivary microRNA: Discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res. 15:5473–5477. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yeh LY, Liu CJ, Wong YK, Chang C, Lin SC and Chang KW: MiR-372 inhibits p62 in head and neck squamous cell carcinoma in vitro and in vivo. Oncotarget. 6:6062–6075. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Liu L, Fu H, Wang Q and Shi Y: Association of decreased expression of serum miR-9 with poor prognosis of oral squamous cell carcinoma patients. Med Sci Monit. 22:289–294. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang CC, Hung PS, Wang PW, Liu CJ, Chu TH, Cheng HW and Lin SC: miR-181 as a putative biomarker for lymph-node metastasis of oral squamous cell carcinoma. J Oral Pathol Med. 40:397–404. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP and Wei WI: Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res. 14:2588–2592. 2018. View Article : Google Scholar | |
Lu YC, Chen YJ, Wang HM, Tsai CY, Chen WH, Huang YC, Fan KH, Tsai CN, Huang SF, Kang CJ, et al: Oncogenic function and early detection potential of miRNA-10b in oral cancer as identified by microRNA profiling. Cancer Prev Res (Phila). 5:665–674. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kao YY, Tu HF, Kao SY, Chang KW and Lin SC: The increase of oncogenic miRNA expression in tongue carcinogenesis of a mouse model. Oral Oncol. 51:1103–1112. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu CJ, Tsai MM, Tu HF, Lui MT, Cheng HW and Lin SC: MiR-196a overexpression and miR-196a2 gene polymorphism are prognostic predictors of oral carcinomas. Ann Surg Oncol. 20 (Suppl 3):S406–S414. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lin SC, Liu CJ, Lin JA, Chiang WF, Hung PS and Chang KW: MiR-24 up-regulation in oral carcinoma: Positive association from clinical and in vitro analysis. Oral Oncol. 46:204–208. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lu YC, Chang JT, Huang YC, Huang CC, Chen WH, Lee LY, Huang BS, Chen YJ, Li HF and Cheng AJ: Combined determination of circulating miR-196a and miR-196b levels produces high sensitivity and specificity for early detection of oral cancer. Clin Biochem. 48:115–121. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu CJ, Lin JS, Cheng HW, Hsu YH, Cheng CY and Lin SC: Plasma miR-187* is a potential biomarker for oral carcinoma. Clin Oral Investig. 21:1131–1138. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lo WY, Wang HJ, Chiu CW and Chen SF: MiR-27b-regulated TCTP as a novel plasma biomarker for oral cancer: From quantitative proteomics to post-transcriptional study. J Proteomics. 77:154–166. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ries J, Vairaktaris E, Kintopp R, Baran C, Neukam FW and Nkenke E: Alterations in miRNA expression patterns in whole blood of OSCC patients. In Vivo. 28:851–861. 2014.PubMed/NCBI | |
Shin JA, Li C, Choi ES, Cho SD and Cho NP: High expression of microRNA-127 is involved in cell cycle arrest in MC-3 mucoepidermoid carcinoma cells. Mol Med Rep. 7:708–712. 2013. View Article : Google Scholar : PubMed/NCBI | |
Binmadi NO, Basile JR, Perez P, Gallo A, Tandon M, Elias W, Jang SI and Alevizos I: miRNA expression profile of mucoepidermoid carcinoma. Oral Dis. 24:537–543. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ramer N, Wu H, Sabo E, Ramer Y, Emanuel P, Orta L and Burstein DE: Prognostic value of quantitative p63 immunostaining in adenoid cystic carcinoma of salivary gland assessed by computerized image analysis. Cancer. 116:77–83. 2010.PubMed/NCBI | |
Wang Y, Zhang CY, Xia RH, Han J, Sun B, Sun SY and Li J: The MYB/miR-130a/NDRG2 axis modulates tumor proliferation and metastatic potential in salivary adenoid cystic carcinoma. Cell Death Dis. 9:9172018. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Zhao X, Dong Z, Cao G and Zhang S: Identification of microRNA profiles in salivary adenoid cystic carcinoma cells during metastatic progression. Oncol Lett. 7:2029–2034. 2014. View Article : Google Scholar : PubMed/NCBI | |
Andreasen S, Tan Q, Agander TK, Hansen TVO, Steiner P, Bjørndal K, Høgdall E, Larsen SR, Erentaite D, Olsen CH, et al: MicroRNA dysregulation in adenoid cystic carcinoma of the salivary gland in relation to prognosis and gene fusion status: A cohort study. Virchows Arch. 473:329–340. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Li T, Yan F, Cai W, Zheng J, Jiang X and Sun J: Effect of simvastatin and microRNA-21 inhibitor on metastasis and progression of human salivary adenoid cystic carcinoma. Biomed Pharmacother. 105:1054–1061. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Ruan H, Hu X, Cao A and Song L: miR-381-3p suppresses the proliferation of oral squamous cell carcinoma cells by directly targeting FGFR2. Am J Cancer Res. 7:913–922. 2017.PubMed/NCBI | |
Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wong TS, Gao W and Chan JY: Transcription regulation of E-cadherin by zinc finger E-box binding homeobox proteins in solid tumors. Biomed Res Int. 2014:9215642014. View Article : Google Scholar : PubMed/NCBI | |
Hashiguchi Y, Kawano S, Goto Y, Yasuda K, Kaneko N, Sakamoto T, Matsubara R, Jinno T, Maruse Y, Tanaka H, et al: Tumor-suppressive roles of ΔNp63β-miR-205 axis in epithelial-mesenchymal transition of oral squamous cell carcinoma via targeting ZEB1 and ZEB2. J Cell Physiol. 233:6565–6577. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shi W, Yang J, Li S, Shan X, Liu X, Hua H, Zhao C, Feng Z, Cai Z, Zhang L, et al: Potential involvement of miR-375 in the premalignant progression of oral squamous cell carcinoma mediated via transcription factor KLF5. Oncotarget. 6:40172–40185. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Sun X, Song B, Qiu X and Zhao J: MiR-375/SLC7A11 axis regulates oral squamous cell carcinoma proliferation and invasion. Cancer Med. 6:1686–1697. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ji M, Wang W, Yan W, Chen D, Ding X and Wang A: Dysregulation of AKT1, a miR-138 target gene, is involved in the migration and invasion of tongue squamous cell carcinoma. J Oral Pathol Med. 46:731–737. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu R, Zeng G, Gao J, Ren Y, Zhao Z, Zhang J, Tao H and Li D: miR-138 suppresses the proliferation of oral squamous cell carcinoma cells by targeting Yes-associated protein 1. Oncol Rep. 34:2171–2178. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kim JS, Choi DW, Kim CS, Yu SK, Kim HJ, Go DS, Lee SA, Moon SM, Kim SG, Chun HS, et al: MicroRNA-203 induces apoptosis by targeting Bmi-1 in YD-38 oral cancer cells. Anticancer Res. 38:3477–3485. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lim HS, Kim CS, Kim JS, Yu SK, Go DS, Lee SA, Moon SM, Chun HS, Kim S and Kim DK: Suppression of oral carcinoma oncogenic activity by microRNA-203 via down-regulation of SEMA6A. Anticancer Res. 37:5425–5433. 2017.PubMed/NCBI | |
Lin J, Lin Y, Fan L, Kuang W, Zheng L, Wu J, Shang P, Wang Q and Tan J: miR-203 inhibits cell proliferation and promotes cisplatin induced cell death in tongue squamous cancer. Biochem Biophys Res Commun. 473:382–387. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xie NN, Liu ZX, Wu C, Wang PL, Song GT and Chen Z: MicroRNA-200c suppresses tumor metastasis in oral squamous carcinoma by inhibiting epithelial-mesenchymal transition. Eur Rev Med Pharmacol Sci. 22:3415–3422. 2018.PubMed/NCBI | |
Zhao L, Ren Y, Tang H, Wang W, He Q, Sun J, Zhou X and Wang A: Deregulation of the miR-222-ABCG2 regulatory module in tongue squamous cell carcinoma contributes to chemoresistance and enhanced migratory/invasive potential. Oncotarget. 6:44538–44550. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Guo H, Yao B and Helms J: miR-15b inhibits cancer-initiating cell phenotypes and chemoresistance of cisplatin by targeting TRIM14 in oral tongue squamous cell cancer. Oncol Rep. 37:2720–2726. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li X, Fan Q, Li J, Song J and Gu Y: MiR-124 down-regulation is critical for cancer associated fibroblasts-enhanced tumor growth of oral carcinoma. Exp Cell Res. 351:100–108. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lin XJ, He CL, Sun T, Duan XJ, Sun Y and Xiong SJ: Hsa-miR-485-5p reverses epithelial to mesenchymal transition and promotes cisplatin-induced cell death by targeting PAK1 in oral tongue squamous cell carcinoma. Int J Mol Med. 40:83–89. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lin Z, Sun L, Chen W, Liu B, Wang Y, Fan S, Li Y and Li J: miR-639 regulates transforming growth factor beta-induced epithelial-mesenchymal transition in human tongue cancer cells by targeting FOXC1. Cancer Sci. 105:1288–1298. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Chen W, Cao G, Dong Z, Xu J, Luo T and Zhang S: MicroRNA-27b inhibits cell proliferation in oral squamous cell carcinoma by targeting FZD7 and Wnt signaling pathway. Arch Oral Biol. 83:92–96. 2017. View Article : Google Scholar : PubMed/NCBI | |
Min A, Zhu C, Peng S, Shuai C, Sun L, Han Y, Qian Y, Gao S and Su T: Downregulation of MicroRNA-148a in cancer-associated fibroblasts from oral cancer promotes cancer cell migration and invasion by targeting Wnt10b. J Biochem Mol Toxicol. 30:186–191. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nagai H, Hasegawa S, Uchida F, Terabe T, Ishibashi Kanno N, Kato K, Yamagata K, Sakai S, Kawashiri S, Sato H, et al: MicroRNA-205-5p suppresses the invasiveness of oral squamous cell carcinoma by inhibiting TIMP2 expression. Int J Oncol. 52:841–850. 2018.PubMed/NCBI | |
Qiao B, Cai JH, King-Yin Lam A and He BX: MicroRNA-542-3p inhibits oral squamous cell carcinoma progression by inhibiting ILK/TGF-β1/Smad2/3 signaling. Oncotarget. 8:70761–70776. 2017. View Article : Google Scholar : PubMed/NCBI | |
Qiu K, Huang Z, Huang Z, He Z and You S: miR-22 regulates cell invasion, migration and proliferation in vitro through inhibiting CD147 expression in tongue squamous cell carcinoma. Arch Oral Biol. 66:92–97. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rastogi B, Kumar A, Raut SK, Panda NK, Rattan V, Joshi N and Khullar M: Downregulation of miR-377 promotes oral squamous cell carcinoma growth and migration by targeting HDAC9. Cancer Invest. 35:152–162. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ruan P, Tao Z and Tan A: Low expression of miR-30a-5p induced the proliferation and invasion of oral cancer via promoting the expression of FAP. Biosci Rep. 38:BSR201710272018. View Article : Google Scholar : PubMed/NCBI | |
Sakha S, Muramatsu T, Ueda K and Inazawa J: Exosomal microRNA miR-1246 induces cell motility and invasion through the regulation of DENND2D in oral squamous cell carcinoma. Sci Rep. 6:387502014. View Article : Google Scholar | |
Shang A, Lu WY, Yang M, Zhou C, Zhang H, Cai ZX, Wang WW, Wang WX and Wu GQ: miR-9 induces cell arrest and apoptosis of oral squamous cell carcinoma via CDK 4/6 pathway. Artif Cells Nanomed Biotechnol. 46:1754–1762. 2018.PubMed/NCBI | |
Shi Z, Johnson JJ, Jiang R, Liu Y and Stack MS: Decrease of miR-146a is associated with the aggressiveness of human oral squamous cell carcinoma. Arch Oral Biol. 60:1416–1427. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang L and Liu H: microRNA-188 is downregulated in oral squamous cell carcinoma and inhibits proliferation and invasion by targeting SIX1. Tumour Biol. 37:4105–4113. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Jin J, Ma T and Zhai H: MiR-139-5p inhibits the tumorigenesis and progression of oral squamous carcinoma cells by targeting HOXA9. J Cell Mol Med. 21:3730–3740. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Jin J, Ma T and Zhai H: MiR-376c-3p regulates the proliferation, invasion, migration, cell cycle and apoptosis of human oral squamous cancer cells by suppressing HOXB7. Biomed Pharmacother. 91:517–525. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Lv L, Li Y and Ji H: MicroRNA-655 suppresses cell proliferation and invasion in oral squamous cell carcinoma by directly targeting metadherin and regulating the PTEN/AKT pathway. Mol Med Rep. 18:3106–3114. 2018.PubMed/NCBI | |
Wang Z, Yan J, Zou T and Gao H: MicroRNA-1294 inhibited oral squamous cell carcinoma growth by targeting c-Myc. Oncol Lett. 16:2243–2250. 2018.PubMed/NCBI | |
Weng JH, Yu CC, Lee YC, Lin CW, Chang WW and Kuo YL: miR-494-3p induces cellular senescence and enhances radiosensitivity in human oral squamous carcinoma cells. Int J Mol Sci. 17(pii): E10922016. View Article : Google Scholar : PubMed/NCBI | |
Xu P, Li Y, Zhang H, Li M and Zhu H: MicroRNA-340 mediates metabolic shift in oral squamous cell carcinoma by targeting glucose transporter-1. J Oral Maxillofac Surg. 74:844–850. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zeng G, Xun W, Wei K, Yang Y and Shen H: MicroRNA-27a-3p regulates epithelial to mesenchymal transition via targeting YAP1 in oral squamous cell carcinoma cells. Oncol Rep. 36:1475–1482. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li X, He J, Shao M, Cui B, Peng F, Li J, Ran Y, Jin D, Kong J, Chang J, et al: Downregulation of miR-218-5p promotes invasion of oral squamous cell carcinoma cells via activation of CD44-ROCK signaling. Biomed Pharmacother. 106:646–654. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhuang Z, Hu F, Hu J, Wang C, Hou J, Yu Z, Wang TT, Liu X and Huang H: MicroRNA-218 promotes cisplatin resistance in oral cancer via the PPP2R5A/Wnt signaling pathway. Oncol Rep. 38:2051–2061. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jiang F, Zhao W, Zhou L, Liu Z, Li W and Yu D: MiR-222 targeted PUMA to improve sensitization of UM1 cells to cisplatin. Int J Mol Sci. 15:22128–22141. 2014. View Article : Google Scholar : PubMed/NCBI | |
Du L, Ma S, Wen X, Chai J and Zhou D: Oral squamous cell carcinoma cells are resistant to doxorubicin through upregulation of miR-221. Mol Med Rep. 16:2659–2667. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Jiang F, Chen X, Liu Z, Ouyang Y, Zhao W and Yu D: Downregulation of miR-221/222 by a microRNA sponge promotes apoptosis in oral squamous cell carcinoma cells through upregulation of PTEN. Oncol Lett. 12:4419–4426. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zheng X, Li J, Peng C, Zhao J, Chi J, Meng X, Yun X, Li D, Yun Y, Gao M and Li Y: MicroRNA-24 induces cisplatin resistance by targeting PTEN in human tongue squamous cell carcinoma. Oral Oncol. 51:998–1003. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cheng CM, Shiah SG, Huang CC, Hsiao JR and Chang JY: Up-regulation of miR-455-5p by the TGF-β-SMAD signalling axis promotes the proliferation of oral squamous cancer cells by targeting UBE2B. J Pathol. 240:38–49. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Ren MS, Shang C, Zhu L and Zhong M: MTSS1 gene regulated by miR-96 inhibits cell proliferation and metastasis in tongue squamous cellular carcinoma Tca8113 cell line. Int J Clin Exp Med. 8:15441–15449. 2015.PubMed/NCBI | |
Hu J, Xu JF and Ge WL: MiR-497 enhances metastasis of oral squamous cell carcinoma through SMAD7 suppression. Am J Transl Res. 8:3023–3031. 2016.PubMed/NCBI | |
Kawakubo-Yasukochi T, Morioka M, Hazekawa M, Yasukochi A, Nishinakagawa T, Ono K, Kawano S, Nakamura S and Nakashima M: MiR-200c-3p spreads invasive capacity in human oral squamous cell carcinoma microenvironment. Mol Carcinog. 57:295–302. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li N, Nan CC, Zhong XY, Weng JQ, Fan HD, Sun HP, Tang S, Shi L and Huang SX: miR-182-5p promotes growth in oral squamous cell carcinoma by inhibiting CAMK2N1. Cell Physiol Biochem. 49:1329–1341. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lin SC, Kao SY, Chang JC, Liu YC, Yu EH, Tseng SH, Liu CJ and Chang KW: Up-regulation of miR-187 modulates the advances of oral carcinoma by targeting BARX2 tumor suppressor. Oncotarget. 7:61355–61365. 2016.PubMed/NCBI | |
Liu Z, Diep C, Mao T, Huang L, Merrill R, Zhang Z and Peng Y: MicroRNA-92b promotes tumor growth and activation of NF-κB signaling via regulation of NLK in oral squamous cell carcinoma. Oncol Rep. 34:2961–2968. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lu M, Wang C, Chen W, Mao C and Wang J: miR-654-5p targets GRAP to promote proliferation, metastasis, and chemoresistance of oral squamous cell carcinoma through Ras/MAPK signaling. DNA Cell Biol. 37:381–388. 2018. View Article : Google Scholar : PubMed/NCBI | |
Peng SY, Tu HF, Yang CC, Wu CH, Liu CJ, Chang KW and Lin SC: MiR-134 targets PDCD7 to reduce E-cadherin expression and enhance oral cancer progression. Int J Cancer. 143:2892–2904. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qiao B, He BX, Cai JH, Tao Q and King-Yin Lam A: microRNA-27a-3p modulates the Wnt/β-Catenin signaling pathway to promote epithelial-mesenchymal transition in oral squamous carcinoma stem cells by targeting SFRP1. Sci Rep. 7:446882017. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Chi J, Gao M, Zhi J, Li Y and Zheng X: Loss of PTEN expression is associated with high microRNA-24 level and poor prognosis in patients with tongue squamous cell carcinoma. J Oral Maxillofac Surg. 75:1449.e1–1449.e8. 2017. View Article : Google Scholar | |
Zheng G, Li N, Jia X, Peng C, Luo L, Deng Y, Yin J, Song Y, Liu H, Lu M, et al: MYCN-mediated miR-21 overexpression enhances chemo-resistance via targeting CADM1 in tongue cancer. J Mol Med (Berl). 94:1129–1141. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen YF, Yang CC, Kao SY, Liu CJ, Lin SC and Chang KW: MicroRNA-211 enhances the oncogenicity of carcinogen-induced oral carcinoma by repressing TCF12 and increasing antioxidant activity. Cancer Res. 76:4872–4886. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen YH, Song Y, Yu YL, Cheng W and Tong X: MiRNA-10a promotes cancer cell proliferation in oral squamous cell carcinoma by upregulating GLUT1 and promoting glucose metabolism. Oncol Lett. 17:5441–5446. 2019.PubMed/NCBI | |
Cao ZH, Cheng JL, Zhang Y, Bo CX and Li YL: MicroRNA-375 inhibits oral squamous cell carcinoma cell migration and invasion by targeting platelet derived growth factor A. Mol Med Rep. 15:922–928. 2017. View Article : Google Scholar : PubMed/NCBI | |
Du Y, Li Y, Lv H, Zhou S, Sun Z and Wang M: miR-98 suppresses tumor cell growth and metastasis by targeting IGF1R in oral squamous cell carcinoma. Int J Clin Exp Pathol. 8:12252–12259. 2015.PubMed/NCBI |