1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Coleman MP, Forman D, Bryant H, Butler J,
Rachet B, Maringe C, Nur U, Tracey E, Coory M, Hatcher J, et al:
Cancer survival in Australia, Canada, Denmark, Norway, Sweden and
the UK, 1995–2007 (the International Cancer Benchmarking
Partnership): An analysis of population-based cancer registry data.
Lancet. 377:127–138. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Warburg O: On the origin of cancer cells.
Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ward PS and Thompson CB: Metabolic
reprogramming: A cancer hallmark even warburg did not anticipate.
Cancer Cell. 21:297–308. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zheng Y, Huang Q, Ding Z, Liu T, Xue C,
Sang X and Gu J: Genome-wide DNA methylation analysis identifies
candidate epigenetic markers and drivers of hepatocellular
carcinoma. Brief Bioinform. 19:101–108. 2018.PubMed/NCBI
|
6
|
Diaz-Moralli S, Tarrado-Castellarnau M,
Alenda C, Castells A and Cascante M: Transketolase-like 1
expression is modulated during colorectal cancer progression and
metastasis formation. PLoS One. 6:e253232011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kowalik MA, Columbano A and Perra A:
Emerging role of the pentose phosphate pathway in hepatocellular
carcinoma. Front Oncol. 7:872017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Jiang P, Du W and Wu M: Regulation of the
pentose phosphate pathway in cancer. Protein Cell. 5:592–602. 2014.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Boros LG, Puigjaner J, Cascante M, Lee WN,
Brandes JL, Bassilian S, Yusuf FI, Williams RD, Muscarella P,
Melvin WS and Schirmer WJ: Oxythiamine and dehydroepiandrosterone
inhibit the nonoxidative synthesis of ribose and tumor cell
proliferation. Cancer Res. 57:4242–4248. 1997.PubMed/NCBI
|
10
|
Coy JF, Dressler D, Wilde J and Schubert
P: Mutations in the transketolase-like gene TKTL1: Clinical
implications for neurodegenerative diseases, diabetes and cancer.
Clin Lab. 51:257–273. 2005.PubMed/NCBI
|
11
|
Zhao J and Zhong CJ: A review on research
progress of transketolase. Neurosci Bull. 25:94–99. 2009.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Li J, Zhu SC, Li SG, Zhao Y, Xu JR and
Song CY: TKTL1 promotes cell proliferation and metastasis in
esophageal squamous cell carcinoma. Biomed Pharmacother. 74:71–76.
2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Fritz P, Coy JF, Murdter TE, Ott G,
Alscher MD and Friedel G: TKTL-1 expression in lung cancer. Pathol
Res Pract. 208:203–209. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sun W, Liu Y, Glazer CA, Shao C, Bhan S,
Demokan S, Zhao M, Rudek MA, Ha PK and Califano JA: TKTL1 is
activated by promoter hypomethylation and contributes to head and
neck squamous cell carcinoma carcinogenesis through increased
aerobic glycolysis and HIF1alpha stabilization. Clin Cancer Res.
16:857–866. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Krockenberger M, Engel JB, Schmidt M,
Kohrenhagen N, Hausler SF, Dombrowski Y, Kapp M, Dietl J and Honig
A: Expression of transketolase-like 1 protein (TKTL1) in human
endometrial cancer. Anticancer Res. 30:1653–1659. 2010.PubMed/NCBI
|
16
|
Chao YK, Peng TL, Chuang WY, Yeh CJ, Li
YL, Lu YC and Cheng AJ: Transketolase serves a poor prognosticator
in esophageal cancer by promoting cell Invasion via
epithelial-mesenchymal transition. J Cancer. 7:1804–1811. 2016.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Kayser G, Sienel W, Kubitz B, Mattern D,
Stickeler E, Passlick B, Werner M and Zur Hausen A: Poor outcome in
primary non-small cell lung cancers is predicted by transketolase
TKTL1 expression. Pathology. 43:719–724. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Song Y, Liu D and He G: TKTL1 and p63 are
biomarkers for the poor prognosis of gastric cancer patients.
Cancer Biomark. 15:591–597. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Benito A, Polat IH, Noe V, Ciudad CJ,
Marin S and Cascante M: Glucose-6-phosphate dehydrogenase and
transketolase modulate breast cancer cell metabolic reprogramming
and correlate with poor patient outcome. Oncotarget.
8:106693–106706. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Langbein S, Zerilli M, Zur Hausen A,
Staiger W, Rensch-Boschert K, Lukan N, Popa J, Ternullo MP,
Steidler A, Weiss C, et al: Expression of transketolase TKTL1
predicts colon and urothelial cancer patient survival: Warburg
effect reinterpreted. Br J Cancer. 94:578–585. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Bery A, Leung F, Smith CR, Diamandis EP
and Kulasingam V: Deciphering the ovarian cancer ascites fluid
peptidome. Clin Proteomics. 11:132014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ricciardelli C, Lokman NA, Cheruvu S, Tan
IA, Ween MP, Pyragius CE, Ruszkiewicz A, Hoffmann P and Oehler MK:
Transketolase is upregulated in metastatic peritoneal implants and
promotes ovarian cancer cell proliferation. Clin Exp Metastasis.
32:441–455. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Rhodes DR, Kalyana-Sundaram S, Mahavisno
V, Varambally R, Yu J, Briggs BB, Barrette TR, Anstet MJ,
Kincead-Beal C, Kulkarni P, et al: Oncomine 3.0: Genes, pathways,
and networks in a collection of 18,000 cancer gene expression
profiles. Neoplasia. 9:166–180. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Gyorffy B, Lanczky A, Eklund AC, Denkert
C, Budczies J, Li Q and Szallasi Z: An online survival analysis
tool to rapidly assess the effect of 22,277 genes on breast cancer
prognosis using microarray data of 1,809 patients. Breast Cancer
Res Treat. 123:725–731. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Gyorffy B, Surowiak P, Budczies J and
Lanczky A: Online survival analysis software to assess the
prognostic value of biomarkers using transcriptomic data in
non-small-cell lung cancer. PLoS One. 8:e822412013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Gyorffy B, Lanczky A and Szallasi Z:
Implementing an online tool for genome-wide validation of
survival-associated biomarkers in ovarian-cancer using microarray
data from 1287 patients. Endocr Relat Cancer. 19:197–208. 2012.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhao M, Li S, Zhou L, Shen Q, Zhu H and
Zhu X: Prognostic values of excision repair cross-complementing
genes mRNA expression in ovarian cancer patients. Life Sci.
194:34–39. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Tian X, Han Y, Yu L, Luo B, Hu Z, Li X,
Yang Z, Wang X, Huang W, Wang H, et al: Decreased expression of
ALDH5A1 predicts prognosis in patients with ovarian cancer. Cancer
Biol Ther. 18:245–251. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tothill RW, Tinker AV, George J, Brown R,
Fox SB, Lade S, Johnson DS, Trivett MK, Etemadmoghadam D, Locandro
B, et al: Novel molecular subtypes of serous and endometrioid
ovarian cancer linked to clinical outcome. Clin Cancer Res.
14:5198–5208. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tseng CW, Kuo WH, Chan SH, Chan HL, Chang
KJ and Wang LH: Transketolase regulates the metabolic switch to
control breast cancer cell metastasis via the α-Ketoglutarate
signaling pathway. Cancer Res. 78:2799–2812. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yang H, Wu XL, Wu KH, Zhang R, Ju LL, Ji
Y, Zhang YW, Xue SL, Zhang YX, Yang YF and Yu MM: MicroRNA-497
regulates cisplatin chemosensitivity of cervical cancer by
targeting transketolase. Am J Cancer Res. 6:2690–2699.
2016.PubMed/NCBI
|
32
|
Chen Y, Xiong X, Wang Y, Zhao J, Shi H,
Zhang H, Wang Y, Wei Y, Xue W and Zhang J: Proteomic screening for
serum biomarkers for cervical cancer and their clinical
significance. Med Sci Monit. 25:288–297. 2019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yi H, Zheng X, Song J, Shen R, Su Y and
Lin D: Exosomes mediated pentose phosphate pathway in ovarian
cancer metastasis: A proteomics analysis. Int J Clin Exp Pathol.
8:15719–15728. 2015.PubMed/NCBI
|
34
|
Zheng Y, Ming P, Zhu C, Si Y, Xu S, Chen
A, Wang J and Zhang B: Hepatitis B virus X protein-induced SH2
domain-containing 5 (SH2D5) expression promotes hepatoma cell
growth via an SH2D5-transketolase interaction. J Biol Chem.
294:4815–4827. 2019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lin CC, Chen LC, Tseng VS, Yan JJ, Lai WW,
Su WP, Lin CH, Huang CY and Su WC: Malignant pleural effusion cells
show aberrant glucose metabolism gene expression. Eur Respir J.
37:1453–1465. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ahopelto K, Bockelman C, Hagstrom J,
Koskensalo S and Haglund C: Transketolase-like protein 1 expression
predicts poor prognosis in colorectal cancer. Cancer Biol Ther.
17:163–168. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Shi Z, Tang Y, Li K and Fan Q: TKTL1
expression and its downregulation is implicated in cell
proliferation inhibition and cell cycle arrest in esophageal
squamous cell carcinoma. Tumour Biol. 36:8519–8529. 2015.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Schwaab J, Horisberger K, Ströbel P, Bohn
B, Gencer D, Kähler G, Kienle P, Post S, Wenz F, Hofmann WK, et al:
Expression of Transketolase like gene 1 (TKTL1) predicts
disease-free survival in patients with locally advanced rectal
cancer receiving neoadjuvant chemoradiotherapy. BMC Cancer.
11:3632011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Schmidt M, Kammerer U, Segerer S, Cramer
A, Kohrenhagen N, Dietl J and Voelker HU: Glucose metabolism and
angiogenesis in granulosa cell tumors of the ovary: Activation of
Akt, expression of M2PK, TKTL1 and VEGF. Eur J Obstet Gynecol
Reprod Biol. 139:72–78. 2008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Krockenberger M, Honig A, Rieger L, Coy
JF, Sutterlin M, Kapp M, Horn E, Dietl J and Kammerer U:
Transketolase-like 1 expression correlates with subtypes of ovarian
cancer and the presence of distant metastases. Int J Gynecol
Cancer. 17:101–106. 2007. View Article : Google Scholar : PubMed/NCBI
|
41
|
Chen H, Yue JX, Yang SH, Ding H, Zhao RW
and Zhang S: Overexpression of transketolase-like gene 1 is
associated with cell proliferation in uterine cervix cancer. J Exp
Clin Cancer Res. 28:432009. View Article : Google Scholar : PubMed/NCBI
|
42
|
Zhang S, Yang JH and Cai PC: Effects of
transketolase-like gene TKTL1 on occurrence and metastasis of human
nasopharyngeal carcinoma. Zhonghua Yi Xue Za Zhi. 88:3131–3134.
2008.(In Chinese). PubMed/NCBI
|
43
|
Ge L, Li N, Yuan GW, Sun YC and Wu LY:
Nedaplatin and paclitaxel compared with carboplatin and paclitaxel
for patients with platinum-sensitive recurrent ovarian cancer. Am J
Cancer Res. 8:1074–1082. 2018.PubMed/NCBI
|
44
|
Griffiths RW, Zee YK, Evans S, Mitchell
CL, Kumaran GC, Welch RS, Jayson GC, Clamp AR and Hasan J: Outcomes
after multiple lines of chemotherapy for platinum-resistant
epithelial cancers of the ovary, peritoneum, and fallopian tube.
Int J Gynecol Cancer. 21:58–65. 2011. View Article : Google Scholar : PubMed/NCBI
|
45
|
Taoka Y, Matsumoto K, Ohashi K, Minamida
S, Hagiwara M, Nagi S, Saito T, Kodera Y and Iwamura M: Protein
expression profile related to cisplatin resistance in bladder
cancer cell lines detected by two-dimensional gel electrophoresis.
Biomed Res. 36:253–261. 2015. View Article : Google Scholar : PubMed/NCBI
|
46
|
Zheng X and Li H: TKTL1 modulates the
response of paclitaxel-resistant human ovarian cancer cells to
paclitaxel. Biochem Biophys Res Commun. 503:572–579. 2018.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Na K, Sung JY and Kim HS: TP53 Mutation
status of tubo-ovarian and peritoneal high-grade serous carcinoma
with a wild-type p53 immunostaining pattern. Anticancer Res.
37:6697–6703. 2017.PubMed/NCBI
|
48
|
Kalamanathan S, Bates V, Lord R and Green
JA: The mutational profile of sporadic epithelial ovarian
carcinoma. Anticancer Res. 31:2661–2668. 2011.PubMed/NCBI
|
49
|
Munksgaard PS and Blaakaer J: The
association between endometriosis and ovarian cancer: A review of
histological, genetic and molecular alterations. Gynecol Oncol.
124:164–169. 2012. View Article : Google Scholar : PubMed/NCBI
|
50
|
Harami-Papp H, Pongor LS, Munkacsy G,
Horvath G, Nagy AM, Ambrus A, Hauser P, Szabo A, Tretter L and
Gyorffy B: TP53 mutation hits energy metabolism and increases
glycolysis in breast cancer. Oncotarget. 7:67183–67195. 2016.
View Article : Google Scholar : PubMed/NCBI
|