1
|
Klimstra DS, Pitman MB and Hruban RN: An
algorithmic approach to the diagnosis of pancreatic neoplasms. Arch
Pathol Lab Med. 133:454–464. 2009.PubMed/NCBI
|
2
|
Keutgen XM, Nilubol N and Kebebew E:
Malignant-functioning neuroendocrine tumors of the pancreas: A
survival analysis. Surgery. 159:1382–1389. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kim JY, Hong SM and Ro JY: Recent updates
on grading and classification of neuroendocrine tumors. Ann Diagn
Pathol. 29:11–16. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Parekh JR, Wang SC, Bergsland EK, Venook
AP, Warren RS, Kim GE and Nakakura EK: Lymph node sampling rates
and predictors of nodal metastasis in pancreatic neuroendocrine
tumor resections: The UCSF experience with 149 patients. Pancreas.
41:840–844. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cloyd JM and Poultsides GA: Non-functional
neuroendocrine tumors of the pancreas: Advances in diagnosis and
management. World J Gastroenterol. 21:9512–9525. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kloppel G and Heitz PU: Pancreatic
endocrine tumors. Pathol Res Pract. 183:155–168. 1988. View Article : Google Scholar : PubMed/NCBI
|
7
|
Philips S, Shah SN, Vikram R, Verma S,
Shanbhogue AK and Prasad SR: Pancreatic endocrine neoplasms: A
current update on genetics and imaging. Br J Radiol. 85:682–696.
2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Tesfaye AA, Kamgar M, Azmi A and Philip
PA: The evolution into personalized therapies in pancreatic ductal
adenocarcinoma: Challenges and opportunities. Expert Rev Anticancer
Ther. 18:131–148. 2018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kourie H, Auclin E, Cunha AS, Gaujoux S,
Bruzzi M, Sauvanet A, Lourenco N, Trouilloud I, Louafi S, El-Hajjar
A, et al: Characteristic and outcomes of patients with pathologic
complete response after preoperative treatment in borderline and
locally advanced pancreatic adenocarcinoma: An AGEO multicentric
retrospective cohort. Clin Res Hepatol Gastroenterol. Apr
24–2019.doi: 10.1016/j.clinre.2019.03.007 (Epub ahead of print).
View Article : Google Scholar : PubMed/NCBI
|
10
|
Couvelard A, O'Toole D, Turley H, Leek R,
Sauvanet A, Degott C, Ruszniewski P, Belghiti J, Harris AL, Gatter
K and Pezzella F: Microvascular density and hypoxia-inducible
factor pathway in pancreatic endocrine tumours: Negative
correlation of microvascular density and VEGF expression with
tumour progression. Br J Cancer. 92:94–101. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
d'Assignies G, Couvelard A, Bahrami S,
Vullierme MP, Hammel P, Hentic O, Sauvanet A, Bedossa P,
Ruszniewski P and Vilgrain V: Pancreatic endocrine tumors: $umor
blood flow assessed with perfusion CT reflects angiogenesis and
correlates with prognostic factors. Radiology. 250:407–416. 2009.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Jang KM, Kim SH, Lee SJ and Choi D: The
value of gadoxetic acid enhanced and diffusion-weighted MRI for
prediction of grading of pancreatic neuroendocrine tumors. Acta
Radiol. 55:140–148. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Herwick S, Miller FH and Keppke AL: MRI of
islet cell tumors of the pancreas. AJR Am J Roentgenol.
187:W472–W480. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Worhunsky DJ, Krampitz GW, Poullos PD,
Visser BC, Kunz PL, Fisher GA, Norton JA and Poultsides GA:
Pancreatic neuroendocrine tumours: Hypoenhancement on arterial
phase computed tomography predicts biological aggressiveness. HPB
(Oxford). 16:304–311. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Rodallec M, Vilgrain V, Couvelard A, Rufat
P, O'Toole D, Barrau V, Sauvanet A, Ruszniewski P and Menu Y:
Endocrine pancreatic tumours and helical CT: Contrast enhancement
is correlated with microvascular density, histoprognostic factors
and survival. Pancreatology. 6:77–85. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Pasaoglu E, Dursun N, Ozyalvacli G,
Hacihasanoglu E, Behzatoglu K and Calay O: Comparison of World
Health Organization 2000/2004 and World Health Organization 2010
classifications for gastrointestinal and pancreatic neuroendocrine
tumors. Ann Diagn Pathol. 19:81–87. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Karakuş E, Helvacı A, Ekinci O and Dursun
A: Comparison of WHO 2000 and WHO 2010 classifications of
gastroenteropancreatic neuroendocrine tumors. Turk J Gastroenterol.
25:81–87. 2014. View Article : Google Scholar
|
18
|
Le Bihan D, Breton E, Lallemand D, Grenier
P, Cabanis E and Laval-Jeantet M: MR imaging of intravoxel
incoherent motions: Application to diffusion and perfusion in
neurologic disorders. Radiology. 161:401–407. 1986. View Article : Google Scholar : PubMed/NCBI
|
19
|
Le Bihan D, Breton E, Lallemand D, Aubin
ML, Vignaud J and Laval-Jeantet M: Separation of diffusion and
perfusion in intravoxel incoherent motion MR imaging. Radiology.
168:497–505. 1988. View Article : Google Scholar : PubMed/NCBI
|
20
|
Le Bihan D and Turner R: The capillary
network: A link between IVIM and classical perfusion. Magn Reson
Med. 27:171–178. 1992. View Article : Google Scholar : PubMed/NCBI
|
21
|
Agarwal R, Brunelli SM, Williams K,
Mitchell MD, Feldman HI and Umscheid CA: Gadolinium-based contrast
agents and nephrogenic systemic fibrosis: A systematic review and
meta-analysis. Nephrol Dial Transplant. 24:856–63. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Le Bihan D: Intravoxel incoherent motion
perfusion MR imaging: A wake-up call. Radiology. 249:748–752. 2008.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Lee HJ, Rha SY, Chung YE, Shim HS, Kim YJ,
Hur J, Hong YJ and Choi BW: Tumor perfusion-related parameter of
diffusion-weighted magnetic resonance imaging: Correlation with
histological microvessel density. Magn Reson Med. 71:1554–1558.
2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kang KM, Lee JM, Yoon JH, Kiefer B, Han JK
and Choi BI: Intravoxel incoherent motion diffusion-weighted MR
imaging for characterization of focal pancreatic lesions.
Radiology. 270:444–453. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Hwang EJ, Lee JM, Yoon JH, Kim JH, Han JK,
Choi BI, Lee KB, Jang JY, Kim SW, Nickel MD and Kiefer B:
Intravoxel incoherent motion diffusion-weighted imaging of
pancreatic neuroendocrine tumors: Prediction of the histologic
grade using pure diffusion coefficient and tumor size. Invest
Radiol. 49:396–402. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Klau M, Mayer P, Bergmann F, Maier-Hein K,
Hase J, Hackert T, Kauczor HU, Grenacher L and Stieltjes B:
Correlation of histological vessel characteristics and
diffusion-weighted imaging intravoxel incoherent motion-derived
parameters in pancreatic ductal adenocarcinomas and pancreatic
neuroendocrine tumors. Invest Radiol. 50:792–797. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Li ZS and Li Q: The latest 2010 WHO
classification of tumors of digestive system. Zhonghua Bing Li Xue
Za Zhi. 40:351–354. 2011.(In Chinese). PubMed/NCBI
|
28
|
Thoeny HC and Ross BD: Predicting and
monitoring cancer treatment response with diffusion-weighted MRI. J
Magn Reson Imaging. 32:2–16. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Schnapauff D, Zeile M, Niederhagen MB,
Fleige B, Tunn PU, Hamm B and Dudeck O: Diffusion-weighted
echo-planar magnetic resonance imaging for the assessment of tumor
cellularity in patients with soft-tissue sarcomas. J Magn Reson
Imaging. 29:1355–1359. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Muraoka N, Uematsu H, Kimura H, Imamura Y,
Fujiwara Y, Murakami M, Yamaguchi A and Itoh H: Apparent diffusion
coefficient in pancreatic cancer: Characterization and
histopathological correlations. J Magn Reson Imaging. 27:1302–1308.
2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wang Y, Chen ZE, Yaghmai V, Nikolaidis P,
McCarthy RJ, Merrick L and Miller FH: Diffusion-weighted MR imaging
in pancreatic endocrine tumors correlated with histopathologic
characteristics. J Magn Reson Imaging. 33:1071–1079. 2011.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Vargas HA, Akin O, Franiel T, Mazaheri Y,
Zheng J, Moskowitz C, Udo K, Eastham J and Hricak H:
Diffusion-weighted endorectal MR imaging at 3 T for prostate
cancer: Tumor detection and assessment of aggressiveness.
Radiology. 259:775–784. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Chandarana H, Lee VS, Hecht E, Taouli B
and Sigmund EE: Comparison of biexponential and monoexponential
model of diffusion weighted imaging in evaluation of renal lesions:
Preliminary experience. Invest Radiol. 46:285–291. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Iima M and Le Bihan D: Clinical intravoxel
incoherent motion and diffusion MR Imaging: Past, Present, and
Future. Radiology. 278:13–32. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Jaster R and Emmrich J: Crucial role of
fibrogenesis in pancreatic diseases. Best Pract Res Clin
Gastroenterol. 22:17–29. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Padhani AR, Liu G, Koh DM, Chenevert TL,
Thoeny HC, Takahara T, Dzik-Jurasz A, Ross BD, Van Cauteren M,
Collins D, et al: Diffusion-weighted magnetic resonance imaging as
a cancer biomarker: Consensus and recommendations. Neoplasia.
11:102–125. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ginat DT, Mangla R, Yeaney G, Johnson M
and Ekholm S: Diffusion-weighted imaging for differentiating benign
from malignant skull lesions and correlation with cell density. AJR
Am J Roentgenol. 198:W597–W601. 2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Xu J, Liang Z, Hao S, Zhu L, Ashish M, Jin
C, Fu D and Ni Q: Pancreatic adenocarcinomas: Dynamic 64-slice
helical CT with perfusion imaging. Abdom Imaging. 34:759–766. 2009.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Takahashi Y, Akishima-Fukasawa Y,
Kobayashi N, Sano T, Kosuge T, Nimura Y, Kanai Y and Hiraoka N:
Prognostic value of tumor architecture, tumor-associated vascular
characteristics, and expression of angiogenic molecules in
pancreatic endocrine tumors. Clin Cancer Res. 13:187–196. 2007.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Lemke A, Stieltjes B, Schad LR and Laun
FB: Toward an optimal distribution of b values for intravoxel
incoherent motion imaging. Magn Reson Imaging. 29:766–776. 2011.
View Article : Google Scholar : PubMed/NCBI
|