1
|
Döhner H, Weisdorf DJ and Bloomfield CD:
Acute myeloid leukemia. N Engl J Med. 373:1136–1152. 2015.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Wang N, Feng YJ, Wang BH, Fang LW, Cong S,
Li YC, Yin P, Zhou MG and Wang LH: Disease burden of leukemia in
the Chinese population, in 1990 and 2013. Zhonghua Liu Xing Bing
Xue Za Zhi. 37:783–787. 2016.(In Chinese). PubMed/NCBI
|
4
|
Dohner H, Estey E, Grimwade D, Amadori S,
Appelbaum FR, Büchner T, Dombret H, Ebert BL, Fenaux P, Larson RA,
et al: Diagnosis and management of AML in adults: 2017 ELN
recommendations from an international expert panel. Blood.
129:424–447. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cocco L, Follo MY, Manzoli L and Suh PG:
Phosphoinositide-specific phospholipase C in health and disease. J
Lipid Res. 56:1853–1860. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Follo MY, Manzoli L, Poli A, McCubrey JA
and Cocco L: PLC and PI3K/Akt/mTOR signalling in disease and
cancer. Adv Biol Regul. 57:10–16. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Cheng M, Bhujwalla ZM and Glunde K:
Targeting phospholipid metabolism in cancer. Front Oncol.
6:2662016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sengelaub CA, Navrazhina K, Ross JB,
Halberg N and Tavazoie SF: PTPRN2 and PLCβ1 promote metastatic
breast cancer cell migration through PI(4,5)P2-dependent actin
remodeling. EMBO J. 35:62–76. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lo Vasco VR, Calabrese G, Manzoli L, Palka
G, Spadano A, Morizio E, Guanciali-Franchi P, Fantasia D and Cocco
L: Inositide-specific phospholipase c beta1 gene deletion in the
progression of myelodysplastic syndrome to acute myeloid leukemia.
Leukemia. 18:1122–1126. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Cocco L, Manzoli L, Palka G and Martelli
AM: Nuclear phospholipase C beta1, regulation of the cell cycle and
progression of acute myeloid leukemia. Adv Enzyme Regul.
45:126–135. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Bavelloni A, Poli A, Fiume R, Blalock W,
Matteucci A, Ramazzotti G, McCubrey JA, Cocco L and Faenza I:
PLC-beta 1 regulates the expression of miR-210 during
mithramycin-mediated erythroid differentiation in K562 cells.
Oncotarget. 5:4222–4231. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bavelloni A, Dmitrienko GI, Goodfellow VJ,
Ghavami A, Piazzi M, Blalock W, Chiarini F, Cocco L and Faenza I:
PLCβ1a and PLCβ1b selective regulation and cyclin D3 modulation
reduced by kinamycin F during k562 cell differentiation. J Cell
Physiol. 230:587–594. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bertagnolo V, Benedusi M, Querzoli P,
Pedriali M, Magri E, Brugnoli F and Capitani S: PLC-beta2 is highly
expressed in breast cancer and is associated with a poor outcome: A
study on tissue microarrays. Int J Oncol. 28:863–872.
2006.PubMed/NCBI
|
14
|
Bertagnolo V, Benedusi M, Brugnoli F,
Lanuti P, Marchisio M, Querzoli P and Capitani S: Phospholipase
C-beta 2 promotes mitosis and migration of human breast
cancer-derived cells. Carcinogenesis. 28:1638–1645. 2007.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Johansson P, Aoude LG, Wadt K, Glasson WJ,
Warrier SK, Hewitt AW, Kiilgaard JF, Heegaard S, Isaacs T,
Franchina M, et al: Deep sequencing of uveal melanoma identifies a
recurrent mutation in PLCB4. Oncotarget. 7:4624–4631. 2016.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Li CF, Liu TT, Chuang IC, Chen YY, Fang
FM, Chan TC, Li WS and Huang HY: PLCB4 copy gain and PLCß4
overexpression in primary gastrointestinal stromal tumors:
Integrative characterization of a lipid-catabolizing enzyme
associated with worse disease-free survival. Oncotarget.
8:19997–20010. 2017.PubMed/NCBI
|
17
|
Kakiuchi T, Takahara T, Kasugai Y, Arita
K, Yoshida N, Karube K, Suguro M, Matsuo K, Nakanishi H, Kiyono T,
et al: Modeling mesothelioma utilizing human mesothelial cells
reveals involvement of phospholipase-C beta 4 in YAP-active
mesothelioma cell proliferation. Carcinogenesis. Aug 24–2016.(Epub
ahead of print). View Article : Google Scholar : PubMed/NCBI
|
18
|
van de Nes JAP, Koelsche C, Gessi M,
Möller I, Sucker A, Scolyer RA, Buckland ME, Pietsch T, Murali R,
Schadendorf D, et al: Activating CYSLTR2 and PLCB4 mutations in
primary leptomeningeal melanocytic tumors. J Invest Dermatol.
137:2033–2035. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Thomas D and Majeti R: Biology and
relevance of human acute myeloid leukemia stem cells. Blood.
129:1577–1585. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ashburner M, Ball CA, Blake JA, Botstein
D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT,
et al: Gene ontology: Tool for the unification of biology. The gene
ontology consortium. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tanabe M and Kanehisa M: Using the KEGG
database resource. Curr Protoc Bioinformatics. Chapter 1: Unit1.12.
2012.PubMed/NCBI
|
22
|
Aoki KF and Kanehisa M: Using the KEGG
database resource. Curr Protoc Bioinformatics. Chapter 1: Unit
1.12. 2005.PubMed/NCBI
|
23
|
Huang da W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Eppert K, Takenaka K, Lechman ER, Waldron
L, Nilsson B, van Galen P, Metzeler KH, Poeppl A, Ling V, Beyene J,
et al: Stem cell gene expression programs influence clinical
outcome in human leukemia. Nat Med. 17:1086–1093. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zheng GH, Fu JR, Xu YH, Jin XQ, Liu WL and
Zhou JF: Screening and cloning of multi-drug resistant genes in
HL-60/MDR cells. Leuk Res. 33:1120–1123. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ivey A, Hills RK, Simpson MA, Jovanovic
JV, Gilkes A, Grech A, Patel Y, Bhudia N, Farah H, Mason J, et al:
Assessment of minimal residual disease in standard-Risk AML. N Engl
J Med. 374:422–433. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Terwijn M, van Putten WL, Kelder A, van
der Velden VH, Brooimans RA, Pabst T, Maertens J, Boeckx N, de
Greef GE, Valk PJ, et al: High prognostic impact of flow cytometric
minimal residual disease detection in acute myeloid leukemia: Data
from the HOVON/SAKK AML 42A study. J Clin Oncol. 31:3889–3897.
2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chen X, Xie H, Wood BL, Walter RB, Pagel
JM, Becker PS, Sandhu VK, Abkowitz JL, Appelbaum FR and Estey EH:
Relation of clinical response and minimal residual disease and
their prognostic impact on outcome in acute myeloid leukemia. J
Clin Oncol. 33:1258–1264. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Schuurhuis GJ and Ossenkoppele G: Minimal
residual disease in acute myeloid leukemia: Already predicting a
safe haven? Expert Rev Hematol. 3:1–5. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Walter RB, Buckley SA, Pagel JM, Wood BL,
Storer BE, Sandmaier BM, Fang M, Gyurkocza B, Delaney C, Radich JP,
et al: Significance of minimal residual disease before
myeloablative allogeneic hematopoietic cell transplantation for AML
in first and second complete remission. Blood. 122:1813–1821. 2013.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Buckley SA, Wood BL, Othus M, Hourigan CS,
Ustun C, Linden MA, DeFor TE, Malagola M, Anthias C, Valkova V, et
al: Minimal residual disease prior to allogeneic hematopoietic cell
transplantation in acute myeloid leukemia: A meta-analysis.
Haematologica. 102:865–873. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zeijlemaker W, Grob T, Meijer R, Hanekamp
D, Kelder A, Carbaat-Ham JC, Oussoren-Brockhoff YJM, Snel AN,
Veldhuizen D, Scholten WJ, et al: CD34+CD38-leukemic
stem cell frequency to predict outcome in acute myeloid leukemia.
Leukemia. 33:1102–1112. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Plesa A, Dumontet C, Mattei E, Tagoug I,
Hayette S, Sujobert P, Tigaud I, Pages MP, Chelghoum Y, Baracco F,
et al: High frequency of CD34+CD38−/low
immature leukemia cells is correlated with unfavorable prognosis in
acute myeloid leukemia. World J Stem Cells. 9:227–234. 2017.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Tomita H, Tanaka K, Tanaka T and Hara A:
Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget.
7:11018–11032. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Jaśkiewicz A, Pająk B and Orzechowski A:
The many faces of Rap1 GTPase. Int J Mol Sci. 19(pii): E28482018.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Minato N and Hattori M: Spa-1 (Sipa1) and
Rap signaling in leukemia and cancer metastasis. Cancer Sci.
100:17–23. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Rebhun JF, Castro AF and Quilliam LA:
Identification of guanine nucleotide exchange factors (GEFs) for
the Rap1 GTPase. Regulation of MR-GEF by M-Ras-GTP interaction. J
Biol Chem. 275:34901–34908. 2000. View Article : Google Scholar : PubMed/NCBI
|
38
|
Sot B, Kötting C, Deaconescu D, Suveyzdis
Y, Gerwert K and Wittinghofer A: Unravelling the mechanism of
dual-specificity GAPs. EMBO J. 29:1205–1214. 2010. View Article : Google Scholar : PubMed/NCBI
|