The role of pyruvate kinase M2 in anticancer therapeutic treatments (Review)
- Authors:
- Qiongli Su
- Shengping Luo
- Qiuhong Tan
- Jun Deng
- Sichun Zhou
- Mei Peng
- Ting Tao
- Xiaoping Yang
-
Affiliations: Department of Pharmacy, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China, Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China, Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China, Department of Pharmacy, Yueyang Maternal‑Child Medicine Health Hospital, Yueyang, Hunan 414000, P.R. China - Published online on: October 2, 2019 https://doi.org/10.3892/ol.2019.10948
- Pages: 5663-5672
-
Copyright: © Su et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Li Y, Wang Y, Zhou Y, Li J, Chen K, Zhang L, Deng M, Deng S, Li P and Xu B: Cooperative effect of chidamide and chemotherapeutic drugs induce apoptosis by DNA damage accumulation and repair defects in acute myeloid leukemia stem and progenitor cells. Clin Epigenetics. 9:832017. View Article : Google Scholar : PubMed/NCBI | |
Ward PS and Thompson CB: Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell. 21:297–308. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kang YP, Ward NP and DeNicola GM: Recent advances in cancer metabolism: A technological perspective. Exp Mol Med. 50:312018. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, Sotgia F and Lisanti MP: Cancer metabolism: A therapeutic perspective. Nat Rev Clin Oncol. 14:11–31. 2017. View Article : Google Scholar : PubMed/NCBI | |
Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Roboz GJ, Altman JK, Stone RM, DeAngelo DJ, Levine RL, Flinn IW, et al: Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 130:722–731. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bayley JP and Devilee P: The Warburg effect in 2012. Curr Opin Oncol. 24:62–67. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mazurek S: Pyruvate kinase type M2: A key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol. 43:969–980. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shinohara H, Taniguchi K, Kumazaki M, Yamada N, Ito Y, Otsuki Y, Uno B, Hayakawa F, Minami Y, Naoe T and Akao Y: Anti-cancer fatty-acid derivative induces autophagic cell death through modulation of PKM isoform expression profile mediated by bcr-abl in chronic myeloid leukemia. Cancer Lett. 360:28–38. 2015. View Article : Google Scholar : PubMed/NCBI | |
Taniguchi K, Sugito N, Kumazaki M, Shinohara H, Yamada N, Nakagawa Y, Ito Y, Otsuki Y, Uno B, Uchiyama K and Akao Y: MicroRNA-124 inhibits cancer cell growth through PTB1/PKM1/PKM2 feedback cascade in colorectal cancer. Cancer Lett. 363:17–27. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shi HS, Li D, Zhang J, Wang YS, Yang L, Zhang HL, Wang XH, Mu B, Wang W, Ma Y, et al: Silencing of pkm2 increases the efficacy of docetaxel in human lung cancer xenografts in mice. Cancer Sci. 101:1447–1453. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zheng Q, Lin Z, Xu J, Lu Y, Meng Q, Wang C, Yang Y, Xin X, Li X, Pu H, et al: Long noncoding RNA MEG3 suppresses liver cancer cells growth through inhibiting β-catenin by activating PKM2 and inactivating PTEN. Cell Death Dis. 9:2532018. View Article : Google Scholar : PubMed/NCBI | |
Benesch C, Schneider C, Voelker HU, Kapp M, Caffier H, Krockenberger M, Dietl J, Kammerer U and Schmidt M: The clinicopathological and prognostic relevance of pyruvate kinase M2 and pAkt expression in breast cancer. Anticancer Res. 30:1689–1694. 2010.PubMed/NCBI | |
Lockney NA, Zhang M, Lu Y, Sopha SC, Washington MK, Merchant N, Zhao Z, Shyr Y, Chakravarthy AB and Xia F: Pyruvate kinase muscle isoenzyme 2 (PKM2) expression is associated with overall survival in pancreatic ductal adenocarcinoma. J Gastrointest Cancer. 46:390–398. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Lv F, Liu F, Guo X, Fan Y, Gu F, Gu J and Fu L: High expression of pyruvate kinase M2 is associated with chemosensitivity to epirubicin and 5-fluorouracil in breast cancer. J Cancer. 6:1130–1139. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yoo BC, Ku JL, Hong SH, Shin YK, Park SY, Kim HK and Park JG: Decreased pyruvate kinase M2 activity linked to cisplatin resistance in human gastric carcinoma cell lines. Int J Cancer. 108:532–539. 2004. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Balibrea E, Plasencia C, Ginés A, Martinez-Cardús A, Musulén E, Aguilera R, Manzano JL, Neamati N and Abad A: A proteomic approach links decreased pyruvate kinase M2 expression to oxaliplatin resistance in patients with colorectal cancer and in human cell lines. Mol Cancer Ther. 8:771–778. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Wu J, Zhang W, Luo H, Shen Z, Cheng H and Zhu X: PKM2 enhances chemosensitivity to cisplatin through interaction with the mTOR pathway in cervical cancer. Sci Rep. 6:307882016. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Zhang D, Chen X, He L, Li T, Xu X and Li M: Nuclear PKM2 contributes to gefitinib resistance via upregulation of STAT3 activation in colorectal cancer. Sci Rep. 5:160822015. View Article : Google Scholar : PubMed/NCBI | |
Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL and Cantley LC: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 452:230–233. 2008. View Article : Google Scholar : PubMed/NCBI | |
Prakasam G, Singh RK, Iqbal MA, Saini SK, Tiku AB and Bamezai RNK: Pyruvate kinase M knockdown-induced signaling via AMP-activated protein kinase promotes mitochondrial biogenesis, autophagy, and cancer cell survival. J Biol Chem. 292:15561–15576. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zheng B, Liu F, Zeng L, Geng L, Ouyang X, Wang K and Huang Q: Overexpression of pyruvate kinase type M2 (PKM2) promotes ovarian cancer cell growth and survival via regulation of cell cycle progression related with upregulated CCND1 and downregulated CDKN1A expression. Med Sci Monit. 24:3103–3112. 2018. View Article : Google Scholar : PubMed/NCBI | |
Goldberg MS and Sharp PA: Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression. J Exp Med. 209:217–224. 2012. View Article : Google Scholar : PubMed/NCBI | |
Spoden GA, Mazurek S, Morandell D, Bacher N, Ausserlechner MJ, Jansen-Dürr P, Eigenbrodt E and Zwerschke W: Isotype-specific inhibitors of the glycolytic key regulator pyruvate kinase subtype M2 moderately decelerate tumor cell proliferation. Int J Cancer. 123:312–321. 2008. View Article : Google Scholar : PubMed/NCBI | |
Spoden GA, Rostek U, Lechner S, Mitterberger M, Mazurek S and Zwerschke W: Pyruvate kinase isoenzyme M2 is a glycolytic sensor differentially regulating cell proliferation, cell size and apoptotic cell death dependent on glucose supply. Exp Cell Res. 315:2765–2774. 2009. View Article : Google Scholar : PubMed/NCBI | |
Guo W, Zhang Y, Chen T, Wang Y, Xue J, Zhang Y, Xiao W, Mo X and Lu Y: Efficacy of RNAi targeting of pyruvate kinase M2 combined with cisplatin in a lung cancer model. J Cancer Res Clin Oncol. 137:65–72. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li RZ, Fan XX, Shi DF, Zhu GY, Wang YW, Luo LX, Pan HD, Yao XJ, Leung EL and Liu L: Identification of a new pyruvate kinase M2 isoform (PKM2) activator for the treatment of non-small-cell lung cancer (NSCLC). Chem Biol Drug Des. 92:1851–1858. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Yuan X, Xu B, Zhang H and Li R, Wang X, Ge Z and Li R: Synthesis of novel 7-azaindole derivatives containing pyridin-3-ylmethyl dithiocarbamate moiety as potent PKM2 activators and PKM2 nucleus translocation inhibitors. Eur J Med Chem. 170:1–15. 2019. View Article : Google Scholar : PubMed/NCBI | |
Boxer MB, Jiang JK, Vander Heiden MG, Shen M, Skoumbourdis AP, Southall N, Veith H, Leister W, Austin CP, Park HW, et al: Evaluation of substituted N,N′-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase. J Med Chem. 53:1048–1055. 2010. View Article : Google Scholar : PubMed/NCBI | |
Guo C, Linton A, Jalaie M, Kephart S, Ornelas M, Pairish M, Greasley S, Richardson P, Maegley K, Hickey M, et al: Discovery of 2-((1H-benzo[d]imidazol-1-yl)methyl)-4H-pyrido[1,2-a]pyrimidin-4-ones as novel PKM2 activators. Bioorg Med Chem Lett. 23:3358–3363. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li J, Li S, Guo J, Li Q, Long J, Ma C, Ding Y, Yan C, Li L, Wu Z, et al: Natural product micheliolide (MCL) irreversibly activates pyruvate kinase M2 and suppresses leukemia. J Med Chem. 61:4155–4164. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jiang JK, Boxer MB, Vander Heiden MG, Shen M, Skoumbourdis AP, Southall N, Veith H, Leister W, Austin CP, Park HW, et al: Evaluation of thieno[3,2-b]pyrrole[3,2-d]pyridazinones as activators of the tumor cell specific M2 isoform of pyruvate kinase. Bioorg Med Chem Lett. 20:3387–3393. 2010. View Article : Google Scholar : PubMed/NCBI | |
Matsui Y, Yasumatsu I, Asahi T, Kitamura T, Kanai K, Ubukata O, Hayasaka H, Takaishi S, Hanzawa H and Katakura S: Discovery and structure-guided fragment-linking of 4-(2,3-dichlorobenzoyl)-1-methyl-pyrrole-2-carboxamide as a pyruvate kinase M2 activator. Bioorg Med Chem. 25:3540–3546. 2017. View Article : Google Scholar : PubMed/NCBI | |
Qi W, Keenan HA, Li Q, Ishikado A, Kannt A, Sadowski T, Yorek MA, Wu IH, Lockhart S, Coppey LJ, et al: Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. Nat Med. 23:753–762. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yacovan A, Ozeri R, Kehat T, Mirilashvili S, Sherman D, Aizikovich A, Shitrit A, Ben-Zeev E, Schutz N, Bohana-Kashtan O, et al: 1-(sulfonyl)-5-(arylsulfonyl)indoline as activators of the tumor cell specific M2 isoform of pyruvate kinase. Bioorg Med Chem Lett. 22:6460–6468. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Xiao W, Huang L, Yu G, Ni J, Yang L, Wan R and Hu G: Shikonin induces apoptosis and necroptosis in pancreatic cancer via regulating the expression of RIP1/RIP3 and synergizes the activity of gemcitabine. Am J Transl Res. 9:5507–5517. 2017.PubMed/NCBI | |
Lin TJ, Lin HT, Chang WT, Mitapalli SP, Hsiao PW, Yin SY and Yang NS: Shikonin-enhanced cell immunogenicity of tumor vaccine is mediated by the differential effects of DAMP components. Mol Cancer. 14:1742015. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Xie J, Jiang Z, Wang B, Wang Y and Hu X: Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene. 30:4297–4306. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Zhu Y, Hu J, Jiang L, Li L, Jia S and Zen K: Shikonin inhibits tumor growth in mice by suppressing pyruvate kinase M2-mediated aerobic glycolysis. Sci Rep. 8:145172018. View Article : Google Scholar : PubMed/NCBI | |
Li W, Liu J and Zhao Y: PKM2 inhibitor shikonin suppresses TPA-induced mitochondrial malfunction and proliferation of skin epidermal JB6 cells. Mol Carcinog. 53:403–412. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tang JC, Zhao J, Long F, Chen JY, Mu B, Jiang Z, Ren Y and Yang J: Efficacy of Shikonin against esophageal cancer cells and its possible mechanisms in vitro and in vivo. J Cancer. 9:32–40. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tao T, Su Q, Xu S, Deng J, Zhou S, Zhuang Y, Huang Y, He C, He S, Peng M, et al: Downr-egulation of PKM2 decreases FASN expression in bladder cancer cells through AKT/mTOR/SREBP-1c axis. J Cell Physiol. 234:3088–3104. 2019. View Article : Google Scholar : PubMed/NCBI | |
Boulos JC, Rahama M, Hegazy MF and Efferth T: Shikonin derivatives for cancer prevention and therapy. Cancer Lett. 459:248–267. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ning X, Qi H, Li R, Jin Y, McNutt MA and Yin Y: Synthesis and antitumor activity of novel 2, 3-didithiocarbamate substituted naphthoquinones as inhibitors of pyruvate kinase M2 isoform. J Enzyme Inhib Med Chem. 33:126–129. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ruiter R, Visser LE, van Herk-Sukel MP, Coebergh JW, Haak HR, Geelhoed-Duijvestijn PH, Straus SM, Herings RM and Stricker BH: Lower risk of cancer in patients on metformin in comparison with those on sulfonylurea derivatives: Results from a large population-based follow-up study. Diabetes Care. 35:119–124. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dalva-Aydemir S, Bajpai R, Martinez M, Adekola KU, Kandela I, Wei C, Singhal S, Koblinski JE, Raje NS, Rosen ST and Shanmugam M: Targeting the metabolic plasticity of multiple myeloma with FDA-approved ritonavir and metformin. Clin Cancer Res. 21:1161–1171. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shang D, Wu J, Guo L, Xu Y, Liu L and Lu J: Metformin increases sensitivity of osteosarcoma stem cells to cisplatin by inhibiting expression of PKM2. Int J Oncol. 50:1848–1856. 2017. View Article : Google Scholar : PubMed/NCBI | |
Silvestri A, Palumbo F, Rasi I, Posca D, Pavlidou T, Paoluzi S, Castagnoli L and Cesareni G: Metformin induces apoptosis and downregulates pyruvate kinase M2 in breast cancer cells only when grown in nutrient-poor conditions. PLoS One. 10:e01362502015. View Article : Google Scholar : PubMed/NCBI | |
Hamabe A, Konno M, Tanuma N, Shima H, Tsunekuni K, Kawamoto K, Nishida N, Koseki J, Mimori K, Gotoh N, et al: Role of pyruvate kinase M2 in transcriptional regulation leading to epithelial-mesenchymal transition. Proc Natl Acad Sci USA. 111:15526–15531. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cheng K and Hao M: Metformin inhibits TGF-β1-induced Epithelial-to-Mesenchymal transition via PKM2 relative-mTOR/p70s6k signaling pathway in cervical carcinoma cells. Int J Mol Sci. 17(pii): E20002016. View Article : Google Scholar : PubMed/NCBI | |
Su Q, Tao T, Tang L, Deng J, Darko KO, Zhou S, Peng M, He S, Zeng Q, Chen AF and Yang X: Down-regulation of PKM2 enhances anticancer efficiency of THP on bladder cancer. J Cell Mol Med. 22:2774–2790. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hey E: Vitamin K-what, why, and when. Arch Dis Child Fetal Neonatal Ed. 88:F80–F83. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ogawa M, Nakai S, Deguchi A, Nonomura T, Masaki T, Uchida N, Yoshiji H and Kuriyama S: Vitamins K2, K3 and K5 exert antitumor effects on established colorectal cancer in mice by inducing apoptotic death of tumor cells. Int J Oncol. 31:323–331. 2007.PubMed/NCBI | |
Ivanova D, Zhelev Z, Getsov P, Nikolova B, Aoki I, Higashi T and Bakalova R: Vitamin K: Redox-modulation, prevention of mitochondrial dysfunction and anticancer effect. Redox Biol. 16:352–358. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hitomi M, Nonomura T, Yokoyama F, Yoshiji H, Ogawa M, Nakai S, Deguchi A, Masaki T, Inoue H, Kimura Y, et al: In vitro and in vivo antitumor effects of vitamin K5 on hepatocellular carcinoma. Int J Oncol. 26:1337–1344. 2005.PubMed/NCBI | |
Yamada A, Osada S, Tanahashi T, Matsui S, Sasaki Y, Tanaka Y, Okumura N, Matsuhashi N, Takahashi T, Yamaguchi K and Yoshida K: Novel therapy for locally advanced triple-negative breast cancer. Int J Oncol. 47:1266–1272. 2015. View Article : Google Scholar : PubMed/NCBI | |
Osada S, Saji S and Osada K: Critical role of extracellular signal-regulated kinase phosphorylation on menadione (vitamin K3) induced growth inhibition. Cancer. 91:1156–1165. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lamson DW and Plaza SM: The anticancer effects of vitamin K. Altern Med Rev. 8:303–318. 2003.PubMed/NCBI | |
Bonilla-Porras AR, Jimenez-Del-Rio M and Velez-Pardo C: Vitamin K3 and vitamin C alone or in combination induced apoptosis in leukemia cells by a similar oxidative stress signalling mechanism. Cancer Cell Int. 11:192011. View Article : Google Scholar : PubMed/NCBI | |
Parekh HK, Mansuri-Torshizi H, Srivastava TS and Chitnis MP: Circumvention of adriamycin resistance: Effect of 2-methyl-1,4-naphthoquinone (vitamin K3) on drug cytotoxicity in sensitive and MDR P388 leukemia cells. Cancer Lett. 61:147–156. 1992. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Jiang Z, Wang B, Wang Y and Hu X: Vitamin K(3) and K(5) are inhibitors of tumor pyruvate kinase M2. Cancer Lett. 316:204–210. 2012. View Article : Google Scholar : PubMed/NCBI | |
Scicchitano BM, Sorrentino S, Proietti G, Lama G, Dobrowolny G, Catizone A, Binda E, Larocca LM and Sica G: Levetiracetam enhances the temozolomide effect on glioblastoma stem cell proliferation and apoptosis. Cancer Cell Int. 18:1362018. View Article : Google Scholar : PubMed/NCBI | |
Johnson DR and O'Neill BP: Glioblastoma survival in the United States before and during the temozolomide era. J Neurooncol. 107:359–364. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chu L, Wang A, Ni L, Yan X, Song Y, Zhao M, Sun K, Mu H, Liu S, Wu Z and Zhang C: Nose-to-brain delivery of temozolomide-loaded PLGA nanoparticles functionalized with anti-EPHA3 for glioblastoma targeting. Drug Deliv. 25:1634–1641. 2018. View Article : Google Scholar : PubMed/NCBI | |
Park I, Mukherjee J, Ito M, Chaumeil MM, Jalbert LE, Gaensler K, Ronen SM, Nelson SJ and Pieper RO: Changes in pyruvate metabolism detected by magnetic resonance imaging are linked to DNA damage and serve as a sensor of temozolomide response in glioblastoma cells. Cancer Res. 74:7115–7124. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yuan S, Qiao T, Zhuang X, Chen W, Xing N and Zhang Q: Knockdown of the M2 isoform of pyruvate kinase (PKM2) with shRNA enhances the effect of docetaxel in human NSCLC cell lines in vitro. Yonsei Med J. 57:1312–1323. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cheng C, Xie Z, Li Y, Wang J, Qin C and Zhang Y: PTBP1 knockdown overcomes the resistance to vincristine and oxaliplatin in drug-resistant colon cancer cells through regulation of glycolysis. Biomed Pharmacother. 108:194–200. 2018. View Article : Google Scholar : PubMed/NCBI | |
Taieb J, Pointet AL, Van Laethem JL, Laquente B, Pernot S, Lordick F and Reni M: What treatment in 2017 for inoperable pancreatic cancers? Ann Oncol. 28:1473–1483. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun C, Ansari D, Andersson R and Wu DQ: Does gemcitabine-based combination therapy improve the prognosis of unresectable pancreatic cancer? World J Gastroenterol. 18:4944–4958. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tian S, Li P, Sheng S and Jin X: Upregulation of pyruvate kinase M2 expression by fatty acid synthase contributes to gemcitabine resistance in pancreatic cancer. Oncol Lett. 15:2211–2217. 2018.PubMed/NCBI | |
Li C, Zhao Z, Zhou Z and Liu R: Linc-ROR confers gemcitabine resistance to pancreatic cancer cells via inducing autophagy and modulating the miR-124/PTBP1/PKM2 axis. Cancer Chemother Pharmacol. 78:1199–1207. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim DJ, Park YS, Kang MG, You YM, Jung Y, Koo H, Kim JA, Kim MJ, Hong SM, Lee KB, et al: Pyruvate kinase isoenzyme M2 is a therapeutic target of gemcitabine-resistant pancreatic cancer cells. Exp Cell Res. 336:119–129. 2015. View Article : Google Scholar : PubMed/NCBI | |
Calabretta S, Bielli P, Passacantilli I, Pilozzi E, Fendrich V, Capurso G, Fave GD and Sette C: Modulation of PKM alternative splicing by PTBP1 promotes gemcitabine resistance in pancreatic cancer cells. Oncogene. 35:2031–2039. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dilruba S and Kalayda GV: Platinum-based drugs: Past, present and future. Cancer Chemother Pharmacol. 77:1103–1124. 2016. View Article : Google Scholar : PubMed/NCBI | |
Belanger F, Fortier E, Dubé M, Lemay JF, Buisson R, Masson JY, Elsherbiny A, Costantino S, Carmona E, Mes-Masson AM, et al: Replication protein A availability during DNA replication stress is a major determinant of cisplatin resistance in ovarian cancer cells. Cancer Res. 78:5561–5573. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Zhang F and Wu XR: Inhibition of pyruvate kinase M2 markedly reduces chemoresistance of advanced bladder cancer to cisplatin. Sci Rep. 7:459832017. View Article : Google Scholar : PubMed/NCBI | |
Galanski M: Recent developments in the field of anticancer platinum complexes. Recent Pat Anticancer Drug Discov. 1:285–295. 2006. View Article : Google Scholar : PubMed/NCBI | |
Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M and Kroemer G: Molecular mechanisms of cisplatin resistance. Oncogene. 31:1869–1883. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Hao F, Nan Y, Qu L, Na W, Jia C and Chen X: PKM2 inhibitor shikonin overcomes the cisplatin resistance in bladder cancer by inducing necroptosis. Int J Biol Sci. 14:1883–1891. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li W, Qiu Y, Hao J, Zhao C, Deng X and Shu G: Dauricine upregulates the chemosensitivity of hepatocellular carcinoma cells: Role of repressing glycolysis via miR-199a: HK2/PKM2 modulation. Food Chem Toxicol. 121:156–165. 2018. View Article : Google Scholar : PubMed/NCBI | |
Miya T, Kobayashi K, Hino M, Ando M, Takeuchi S, Seike M, Kubota K and Gemma A; East Japan Chesters Group, : Efficacy of triple antiemetic therapy (palonosetron, dexamethasone, aprepitant) for chemotherapy-induced nausea and vomiting in patients receiving carboplatin-based, moderately emetogenic chemotherapy. Springerplus. 5:20802016. View Article : Google Scholar : PubMed/NCBI | |
Sève P and Dumontet C: Chemoresistance in non-small cell lung cancer. Curr Med Chem Anticancer Agents. 5:73–88. 2005. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, He C and Huang X: Metformin partially reverses the carboplatin-resistance in NSCLC by inhibiting glucose metabolism. Oncotarget. 8:75206–75216. 2017.PubMed/NCBI | |
Kelland L: The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer. 7:573–584. 2007. View Article : Google Scholar : PubMed/NCBI | |
Graham J, Mushin M and Kirkpatrick P: Oxaliplatin. Nat Rev Drug Discov. 3:11–12. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hsu HH, Chen MC, Baskaran R, Lin YM, Day CH, Lin YJ, Tu CC, Vijaya Padma V, Kuo WW and Huang CY: Oxaliplatin resistance in colorectal cancer cells is mediated via activation of ABCG2 to alleviate ER stress induced apoptosis. J Cell Physiol. 233:5458–5467. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fang Z, Gong C, Yu S, Zhou W, Hassan W, Li H, Wang X, Hu Y, Gu K, Chen X, et al: NFYB-induced high expression of E2F1 contributes to oxaliplatin resistance in colorectal cancer via the enhancement of CHK1 signaling. Cancer Lett. 415:58–72. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lu WQ, Hu YY, Lin XP and Fan W: Knockdown of PKM2 and GLS1 expression can significantly reverse oxaliplatin-resistance in colorectal cancer cells. Oncotarget. 8:44171–44185. 2017.PubMed/NCBI | |
Ginés A, Bystrup S, Ruiz de Porras V, Guardia C, Musulén E, Martínez-Cardús A, Manzano JL, Layos L, Abad A and Martínez-Balibrea E: PKM2 subcellular localization is involved in oxaliplatin resistance acquisition in HT29 human colorectal cancer cell lines. PLoS One. 10:e01238302015. View Article : Google Scholar : PubMed/NCBI | |
Russo A, Maiolino S, Pagliara V, Ungaro F, Tatangelo F, Leone A, Scalia G, Budillon A, Quaglia F and Russo G: Enhancement of 5-FU sensitivity by the proapoptotic rpL3 gene in p53 null colon cancer cells through combined polymer nanoparticles. Oncotarget. 7:79670–79687. 2016. View Article : Google Scholar : PubMed/NCBI | |
He J, Xie G, Tong J, Peng Y, Huang H, Li J, Wang N and Liang H: Overexpression of microRNA-122 re-sensitizes 5-FU-resistant colon cancer cells to 5-FU through the inhibition of PKM2 in vitro and in vivo. Cell Biochem Biophys. 70:1343–1350. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hjerpe E, Egyhazi Brage S, Carlson J, Frostvik Stolt M, Schedvins K, Johansson H, Shoshan M and Avall-Lundqvist E: Metabolic markers GAPDH, PKM2, ATP5B and BEC-index in advanced serous ovarian cancer. BMC Clin Pathol. 13:302013. View Article : Google Scholar : PubMed/NCBI | |
Pan C, Wang X, Shi K, Zheng Y, Li J, Chen Y, Jin L and Pan Z: MiR-122 reverses the doxorubicin-resistance in hepatocellular carcinoma cells through regulating the tumor metabolism. PLoS One. 11:e01520902016. View Article : Google Scholar : PubMed/NCBI | |
Han TD, Shang DH and Tian Y: Docetaxel enhances apoptosis and G2/M cell cycle arrest by suppressing mitogen-activated protein kinase signaling in human renal clear cell carcinoma. Genet Mol Res. 152016.doi: 10.4238/gmr.15017321. | |
Sim S, Bergh J, Hellström M, Hatschek T and Xie H: Pharmacogenetic impact of docetaxel on neoadjuvant treatment of breast cancer patients. Pharmacogenomics. 19:1259–1268. 2018. View Article : Google Scholar : PubMed/NCBI | |
van Rossum AGJ, Kok M, van Werkhoven E, Opdam M, Mandjes IAM, van Leeuwen-Stok AE, van Tinteren H, Imholz ALT, Portielje JEA, Bos MMEM, et al: Adjuvant dose-dense doxorubicin-cyclophosphamide versus docetaxel-doxorubicin-cyclophosphamide for high-risk breast cancer: First results of the randomised MATADOR trial (BOOG 2004-04). Eur J Cancer. 102:40–48. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sharma P, López-Tarruella S, García-Saenz JA, Khan QJ, Gómez HL, Prat A, Moreno F, Jerez-Gilarranz Y, Barnadas A, Picornell AC, et al: Pathological response and survival in triple-negative breast cancer following neoadjuvant carboplatin plus docetaxel. Clin Cancer Res. 24:5820–5829. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hata A, Katakami N, Shimokawa M, Mitsudomi T, Yamamoto N and Nakagawa K: Docetaxel Plus RAmucirumab with primary prophylactic pegylated Granulocyte-ColONy stimulating factor support for elderly patients with advanced Non-small-cell lung cancer: A multicenter prospective single arm phase II Trial: DRAGON study (WJOG9416L). Clin Lung Cancer. 19:e865–e869. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tanimura K, Uchino J, Tamiya N, Kaneko Y, Yamada T1, Yoshimura K and Takayama K: Treatment rationale and design of the RAMNITA study: A phase II study of the efficacy of docetaxel + ramucirumab for non-small cell lung cancer with brain metastasis. Medicine (Baltimore). 97:e110842018. View Article : Google Scholar : PubMed/NCBI | |
Milbar N, Kates M, Chappidi MR, Pederzoli F, Yoshida T, Sankin A, Pierorazio PM, Schoenberg MP and Bivalacqua TJ: Oncological outcomes of sequential intravesical gemcitabine and docetaxel in patients with Non-muscle invasive bladder cancer. Bladder Cancer. 3:293–303. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mortimer J, Zonder HB and Pal SK: Lessons learned from the bevacizumab experience. Cancer Control. 19:309–316. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wong N, Ojo D, Yan J and Tang D: PKM2 contributes to cancer metabolism. Cancer Lett. 356:184–191. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hsu MC and Hung WC: Pyruvate kinase M2 fuels multiple aspects of cancer cells: From cellular metabolism, transcriptional regulation to extracellular signaling. Mol Cancer. 17:352018. View Article : Google Scholar : PubMed/NCBI | |
Papadaki C, Sfakianaki M, Lagoudaki E, Giagkas G, Ioannidis G, Trypaki M, Tsakalaki E, Voutsina A, Koutsopoulos A, Mavroudis D, et al: PKM2 as a biomarker for chemosensitivity to front-line platinum-based chemotherapy in patients with metastatic non-small-cell lung cancer. Br J Cancer. 111:1757–1764. 2014. View Article : Google Scholar : PubMed/NCBI |