Insights on CXC chemokine receptor 2 in breast cancer: An emerging target for oncotherapy (Review)
- Authors:
- Fengzhu Guo
- Lang Long
- Jiantao Wang
- Yuyi Wang
- Yanyang Liu
- Li Wang
- Feng Luo
-
Affiliations: Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China - Published online on: October 3, 2019 https://doi.org/10.3892/ol.2019.10957
- Pages: 5699-5708
-
Copyright : © Guo et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
This article is mentioned in:
Abstract
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Sun K, Zheng R, Zeng H, Zhang S, Xia C, Yang Z, Li H, Zou X and He J: Cancer incidence and mortality in China, 2014. Chin J Cancer Res. 30:1–12. 2018. View Article : Google Scholar : PubMed/NCBI | |
Harbeck N, Thomssen C and Gnant M: St. Gallen 2013: Brief preliminary summary of the consensus discussion. Breast Care (Basel). 8:102–109. 2013. View Article : Google Scholar : PubMed/NCBI | |
Edenfield J, Schammel C, Collins J, Schammel D and Edenfield WJ: Metaplastic breast cancer: Molecular typing and identification of potential targeted therapies at a single institution. Clin Breast Cancer. 17:e1–e10. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ma F, Guan Y, Yi Z, Chang L, Li Q, Chen S, Zhu W, Guan X, Li C, Qian H, et al: Assessing tumor heterogeneity using ctDNA to predict and monitor therapeutic response in metastatic breast cancer. Int J Cancer. Jun 26–2019.(Epub ahead of print). View Article : Google Scholar | |
Lee KL, Kuo YC, Ho YS and Huang YH: Triple-negative breast cancer: Current understanding and future therapeutic breakthrough targeting cancer stemness. Cancers. 11(pii): E13342019. View Article : Google Scholar : PubMed/NCBI | |
Sharma B, Varney ML, Saxena S, Wu L and Singh RK: Induction of CXCR2 ligands, stem cell-like phenotype and metastasis in chemotherapy-resistant breast cancer cells. Cancer Lett. 372:192–200. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Luo B, An Y, Sun H, Cai H and Sun D: Systematic review and meta-analysis of the prognostic value of CXCR2 in solid tumor patients. Oncotarget. 8:109740–109751. 2017. View Article : Google Scholar : PubMed/NCBI | |
Murdoch C and Finn A: Chemokine receptors and their role in inflammation and infectious diseases. Blood. 95:3032–3043. 2000. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Feng Y, Wu W, Chang C, Chen D, Chen S and Zhen G: MicroRNA-218-5p plays a protective role in eosinophilic airway inflammation via targeting δ-catenin, a novel catenin in asthma. Clin Exp Allergy. Sep 12–2019.(Epub ahead of print). View Article : Google Scholar | |
Wang X, Iyer A, Lyons AB, Körner H and Wei W: Emerging roles for G-protein coupled receptors in development and activation of macrophages. Front Immunol. 10:20312019. View Article : Google Scholar : PubMed/NCBI | |
Rollins BJ: Chemokines. Blood. 90:909–928. 1997. View Article : Google Scholar : PubMed/NCBI | |
Debnath B, Xu S, Grande F, Garofalo A and Neamati N: Small molecule inhibitors of CXCR4. Theranostics. 3:47–75. 2013. View Article : Google Scholar : PubMed/NCBI | |
O'Hayer KM, Brady DC and Counter CM: ELR+ CXC chemokines and oncogenic Ras-mediated tumorigenesis. Carcinogenesis. 30:1841–1847. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lloyd A, Modi W, Sprenger H, Cevario S, Oppenheim J and Kelvin D: Assignment of genes for interleukin-8 receptors (IL8R) A and B to human chromosome band 2q35. Cytogenet Cell Genet. 63:238–240. 1993. View Article : Google Scholar : PubMed/NCBI | |
Kobilka BK: G protein coupled receptor structure and activation. Biochim Biophys Acta. 1768:794–807. 2007. View Article : Google Scholar : PubMed/NCBI | |
Prado GN, Suetomi K, Shumate D, Maxwell C, Ravindran A, Rajarathnam K and Navarro J: Chemokine signaling specificity: Essential role for the N-terminal domain of chemokine receptors. Biochemistry. 46:8961–8968. 2007. View Article : Google Scholar : PubMed/NCBI | |
Moussouras NA, Getschman AE, Lackner ER, Veldkamp CT, Dwinell MB and Volkman BF: Differences in sulfotyrosine binding amongst CXCR1 and CXCR2 chemokine ligands. Int J Mol Sci. 18(pii): E18942017. View Article : Google Scholar : PubMed/NCBI | |
Cheng Y, Ma XL, Wei YQ and Wei XW: Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochim Biophys Acta Rev Cancer. 1871:289–312. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ahuja SK and Murphy PM: The CXC chemokines growth-regulated oncogene (GRO) alpha, GRObeta, GROgamma, neutrophil-activating peptide-2, and epithelial cell-derived neutrophil-activating peptide-78 are potent agonists for the type B, but not the type A, human interleukin-8 receptor. J Biol Chem. 271:20545–20550. 1996. View Article : Google Scholar : PubMed/NCBI | |
Ha H, Debnath B and Neamati N: Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases. Theranostics. 7:1543–1588. 2017. View Article : Google Scholar : PubMed/NCBI | |
Damaj BB, McColl SR, Mahana W, Crouch MF and Naccache PH: Physical association of Gi2alpha with interleukin-8 receptors. J Biol Chem. 271:12783–12789. 1996. View Article : Google Scholar : PubMed/NCBI | |
Wu D, LaRosa GJ and Simon MI: G protein-coupled signal transduction pathways for interleukin-8. Science. 261:101–103. 1993. View Article : Google Scholar : PubMed/NCBI | |
Knall C, Young S, Nick JA, Buhl AM, Worthen GS and Johnson GL: Interleukin-8 regulation of the Ras/Raf/mitogen-activated protein kinase pathway in human neutrophils. J Biol Chem. 271:2832–2838. 1996. View Article : Google Scholar : PubMed/NCBI | |
Knall C, Worthen GS and Johnson GL: Interleukin 8-stimulated phosphatidylinositol-3-kinase activity regulates the migration of human neutrophils independent of extracellular signal-regulated kinase and p38 mitogen-activated protein kinases. Proc Natl Acad Sci USA. 94:3052–3057. 1997. View Article : Google Scholar : PubMed/NCBI | |
Oeckinghaus A and Ghosh S: The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 1:a0000342009. View Article : Google Scholar : PubMed/NCBI | |
Cheng GZ, Park S, Shu S, He L, Kong W, Zhang W, Yuan Z, Wang LH and Cheng JQ: Advances of AKT pathway in human oncogenesis and as a target for anti-cancer drug discovery. Curr Cancer Drug Targets. 8:2–6. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hoffmann E, Dittrich-Breiholz O, Holtmann H and Kracht M: Multiple control of interleukin-8 gene expression. J Leukoc Biol. 72:847–855. 2002.PubMed/NCBI | |
Tang H, Sun Y, Shi Z, Huang H, Fang Z, Chen J, Xiu Q and Li B: YKL-40 induces IL-8 expression from bronchial epithelium via MAPK (JNK and ERK) and NF-κB pathways, causing bronchial smooth muscle proliferation and migration. J Immunol. 190:438–446. 2013. View Article : Google Scholar : PubMed/NCBI | |
Clapham DE: Calcium signaling. Cell. 80:259–268. 1995. View Article : Google Scholar : PubMed/NCBI | |
Lang K, Niggemann B, Zanker KS and Entschladen F: Signal processing in migrating T24 human bladder carcinoma cells: Role of the autocrine interleukin-8 loop. Int J Cancer. 99:673–680. 2002. View Article : Google Scholar : PubMed/NCBI | |
Schraufstatter IU, Chung J and Burger M: IL-8 activates endothelial cell CXCR1 and CXCR2 through Rho and Rac signaling pathways. Am J Physiol Lung Cell Mol Physiol. 280:L1094–L1103. 2001. View Article : Google Scholar : PubMed/NCBI | |
Cohen-Hillel E, Yron I, Meshel T, Soria G, Attal H and Ben-Baruch A: CXCL8-induced FAK phosphorylation via CXCR1 and CXCR2: Cytoskeleton- and integrin-related mechanisms converge with FAK regulatory pathways in a receptor-specific manner. Cytokine. 33:1–16. 2006. View Article : Google Scholar : PubMed/NCBI | |
Britschgi A, Andraos R, Brinkhaus H, Klebba I, Romanet V, Müller U, Murakami M, Radimerski T and Bentires-Alj M: JAK2/STAT5 inhibition circumvents resistance to PI3K/mTOR blockade: A rationale for cotargeting these pathways in metastatic breast cancer. Cancer Cell. 22:796–811. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, Martiat P, Fox SB, Harris AL and Liu ET: Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA. 100:10393–10398. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hebert CA, Vitangcol RV and Baker JB: Scanning mutagenesis of interleukin-8 identifies a cluster of residues required for receptor binding. J Biol Chem. 266:18989–18994. 1991.PubMed/NCBI | |
Snoussi K, Mahfoudh W, Bouaouina N, Fekih M, Khairi H, Helal AN and Chouchane L: Combined effects of IL-8 and CXCR2 gene polymorphisms on breast cancer susceptibility and aggressiveness. BMC Cancer. 10:2832010. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Lin F, Wang Z, Yang L, Meng J, Ou Z, Shao Z, Di G and Yang G: CXCR2 promotes breast cancer metastasis and chemoresistance via suppression of AKT1 and activation of COX2. Cancer Lett. 412:69–80. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shao N, Chen LH, Ye RY, Lin Y and Wang SM: The depletion of interleukin-8 causes cell cycle arrest and increases the efficacy of docetaxel in breast cancer cells. Biochem Biophys Res Commun. 431:535–541. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ruan JW, Liao YC, Lua I, Li MH, Hsu CY and Chen JH: Human pituitary tumor-transforming gene 1 overexpression reinforces oncogene-induced senescence through CXCR2/p21 signaling in breast cancer cells. Breast Cancer Res. 14:R1062012. View Article : Google Scholar : PubMed/NCBI | |
Lee YS, Choi I, Ning Y, Kim NY, Khatchadourian V, Yang D, Chung HK, Choi D, LaBonte MJ, Ladner RD, et al: Interleukin-8 and its receptor CXCR2 in the tumour microenvironment promote colon cancer growth, progression and metastasis. Br J Cancer. 106:1833–1841. 2012. View Article : Google Scholar : PubMed/NCBI | |
Desurmont T, Skrypek N, Duhamel A, Jonckheere N, Millet G, Leteurtre E, Gosset P, Duchene B, Ramdane N, Hebbar M, et al: Overexpression of chemokine receptor CXCR2 and ligand CXCL7 in liver metastases from colon cancer is correlated to shorter disease-free and overall survival. Cancer Sci. 106:262–269. 2015. View Article : Google Scholar : PubMed/NCBI | |
Katoh H, Wang D, Daikoku T, Sun H, Dey SK and Dubois RN: CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell. 24:631–644. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhou SL, Dai Z, Zhou ZJ, Wang XY, Yang GH, Wang Z, Huang XW, Fan J and Zhou J: Overexpression of CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellular carcinoma. Hepatology. 56:2242–2254. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pollard JW: Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 4:71–78. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sharma B, Nannuru KC, Varney ML and Singh RK: Host Cxcr2-dependent regulation of mammary tumor growth and metastasis. Clin Exp Metastasis. 32:65–72. 2015. View Article : Google Scholar : PubMed/NCBI | |
Singh S, Varney M and Singh RK: Host CXCR2-dependent regulation of melanoma growth, angiogenesis and experimental lung metastasis. Cancer Res. 69:411–415. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cardona AE, Sasse ME, Liu L, Cardona SM, Mizutani M, Savarin C, Hu T and Ransohoff RM: Scavenging roles of chemokine receptors: Chemokine receptor deficiency is associated with increased levels of ligand in circulation and tissues. Blood. 112:256–263. 2008. View Article : Google Scholar : PubMed/NCBI | |
Folkman J: Angiogenesis. Annu Rev Med. 57:1–18. 2006. View Article : Google Scholar : PubMed/NCBI | |
Folkman J: Tumor angiogenesis: Therapeutic implications. N Engl J Med. 285:1182–1186. 1971. View Article : Google Scholar : PubMed/NCBI | |
Stadtmann A and Zarbock A: CXCR2: From bench to bedside. Front Immunol. 3:2632012. View Article : Google Scholar : PubMed/NCBI | |
Addison CL, Daniel TO, Burdick MD, Liu H, Ehlert JE, Xue YY, Buechi L, Walz A, Richmond A and Strieter RM: The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. J Immunol. 165:5269–5277. 2000. View Article : Google Scholar : PubMed/NCBI | |
Caunt M, Hu L, Tang T, Brooks PC, Ibrahim S and Karpatkin S: Growth-regulated oncogene is pivotal in thrombin-induced angiogenesis. Cancer Res. 66:4125–4132. 2006. View Article : Google Scholar : PubMed/NCBI | |
Marjon PL, Bobrovnikova-Marjon EV and Abcouwer SF: Expression of the pro-angiogenic factors vascular endothelial growth factor and interleukin-8/CXCL8 by human breast carcinomas is responsive to nutrient deprivation and endoplasmic reticulum stress. Mol Cancer. 3:42004. View Article : Google Scholar : PubMed/NCBI | |
Petreaca ML, Yao M, Liu Y, Defea K and Martins-Green M: Transactivation of vascular endothelial growth factor receptor-2 by interleukin-8 (IL-8/CXCL8) is required for IL-8/CXCL8-induced endothelial permeability. Mol Biol Cell. 18:5014–5023. 2007. View Article : Google Scholar : PubMed/NCBI | |
Martin D, Galisteo R and Gutkind JS: CXCL8/IL8 stimulates vascular endothelial growth factor (VEGF) expression and the autocrine activation of VEGFR2 in endothelial cells by activating NFkappaB through the CBM (Carma3/Bcl10/Malt1) complex. J Biol Chem. 284:6038–6042. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kyriakakis E, Cavallari M, Pfaff D, Fabbro D, Mestan J, Philippova M, De Libero G, Erne P and Resink TJ: IL-8-mediated angiogenic responses of endothelial cells to lipid antigen activation of iNKT cells depend on EGFR transactivation. J Leukoc Biol. 90:929–939. 2011. View Article : Google Scholar : PubMed/NCBI | |
Niu G and Chen X: Why integrin as a primary target for imaging and therapy. Theranostics. 1:30–47. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Huang R, Chen L, Li S, Shi Q, Jordan C and Huang RP: Identification of interleukin-8 as estrogen receptor-regulated factor involved in breast cancer invasion and angiogenesis by protein arrays. Int J Cancer. 109:507–515. 2004. View Article : Google Scholar : PubMed/NCBI | |
Nannuru KC, Sharma B, Varney ML and Singh RK: Role of chemokine receptor CXCR2 expression in mammary tumor growth, angiogenesis and metastasis. J Carcinog. 10:402011. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI | |
Welch DR and Hurst DR: Defining the hallmarks of metastasis. Cancer Res. 79:3011–3027. 2019. View Article : Google Scholar : PubMed/NCBI | |
van der Horst G, Bos L and van der Pluijm G: Epithelial plasticity, cancer stem cells, and the tumor-supportive stroma in bladder carcinoma. Mol Cancer Res. 10:995–1009. 2012. View Article : Google Scholar : PubMed/NCBI | |
De Larco JE, Wuertz BR, Rosner KA, Erickson SA, Gamache DE, Manivel JC and Furcht LT: A potential role for interleukin-8 in the metastatic phenotype of breast carcinoma cells. Am J Pathol. 158:639–646. 2001. View Article : Google Scholar : PubMed/NCBI | |
De Larco JE, Wuertz BR, Yee D, Rickert BL and Furcht LT: Atypical methylation of the interleukin-8 gene correlates strongly with the metastatic potential of breast carcinoma cells. Proc Natl Acad Sci USA. 100:13988–13993. 2003. View Article : Google Scholar : PubMed/NCBI | |
Singh B, Berry JA, Vincent LE and Lucci A: Involvement of IL-8 in COX-2-mediated bone metastases from breast cancer. J Surg Res. 134:44–51. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kamalakar A, Bendre MS, Washam CL, Fowler TW, Carver A, Dilley JD, Bracey JW, Akel NS, Margulies AG, Skinner RA, et al: Circulating interleukin-8 levels explain breast cancer osteolysis in mice and humans. Bone. 61:176–185. 2014. View Article : Google Scholar : PubMed/NCBI | |
Waugh DJ and Wilson C: The interleukin-8 pathway in cancer. Clin cancer Res. 14:6735–6741. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jin K, Pandey NB and Popel AS: Crosstalk between stromal components and tumor cells of TNBC via secreted factors enhances tumor growth and metastasis. Oncotarget. 8:60210–60222. 2017. View Article : Google Scholar : PubMed/NCBI | |
Halpern JL, Kilbarger A and Lynch CC: Mesenchymal stem cells promote mammary cancer cell migration in vitro via the CXCR2 receptor. Cancer Lett. 308:91–99. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yu PF, Huang Y, Han YY, Lin LY, Sun WH, Rabson AB, Wang Y and Shi YF: TNFα-activated mesenchymal stromal cells promote breast cancer metastasis by recruiting CXCR2+ neutrophils. Oncogene. 36:482–490. 2017. View Article : Google Scholar : PubMed/NCBI | |
Marquette C and Nabell L: Chemotherapy-resistant metastatic breast cancer. Curr Treat Options Oncol. 13:263–275. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen Y and Zhang Y: Application of the CRISPR/Cas9 system to drug resistance in breast cancer. Adv Sci (Weinh). 5:17009642018. View Article : Google Scholar : PubMed/NCBI | |
Sharma B, Nawandar DM, Nannuru KC, Varney ML and Singh RK: Targeting CXCR2 enhances chemotherapeutic response, inhibits mammary tumor growth, angiogenesis, and lung metastasis. Mol Cancer Ther. 12:799–808. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shi Z, Yang WM, Chen LP, Yang DH, Zhou Q, Zhu J, Chen JJ, Huang RC, Chen ZS and Huang RP: Enhanced chemosensitization in multidrug-resistant human breast cancer cells by inhibition of IL-6 and IL-8 production. Breast Cancer Res Treat. 135:737–747. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jia D, Li L, Andrew S, Allan D, Li X, Lee J, Ji G, Yao Z, Gadde S, Figeys D and Wang L: An autocrine inflammatory forward-feedback loop after chemotherapy withdrawal facilitates the repopulation of drug-resistant breast cancer cells. Cell Death Dis. 8:e29322017. View Article : Google Scholar : PubMed/NCBI | |
Stassi G, Garofalo M, Zerilli M, Ricci-Vitiani L, Zanca C, Todaro M, Aragona F, Limite G, Petrella G and Condorelli G: PED mediates AKT-dependent chemoresistance in human breast cancer cells. Cancer Res. 65:6668–6675. 2005. View Article : Google Scholar : PubMed/NCBI | |
Festuccia C, Gravina GL, D'Alessandro AM, Millimaggi D, Di Rocco C, Dolo V, Ricevuto E, Vicentini C and Bologna M: Downmodulation of dimethyl transferase activity enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in prostate cancer cells. Int J Oncol. 33:381–388. 2008.PubMed/NCBI | |
Zanca C, Cozzolino F, Quintavalle C, Di Costanzo S, Ricci-Vitiani L, Santoriello M, Monti M, Pucci P and Condorelli G: PED interacts with Rac1 and regulates cell migration/invasion processes in human non-small cell lung cancer cells. J Cell Physiol. 225:63–72. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang SX, Costantino JP, Kim C, Mamounas EP, Nguyen D, Jeong JH, Wolmark N, Kidwell K, Paik S and Swain SM: Akt phosphorylation at Ser473 predicts benefit of paclitaxel chemotherapy in node-positive breast cancer. J Clin Oncol. 28:2974–2981. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zatelli MC, Molé D, Tagliati F, Minoia M, Ambrosio MR and Degli Uberti E: Cyclo-oxygenase 2 modulates chemoresistance in breast cancer cells involving NF-kappaB. Cell Oncol. 31:457–465. 2009.PubMed/NCBI | |
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI | |
van Nijnatten TJA, Moossdorff M, de Munck L, Goorts B, Vane MLG, Keymeulen KBMI, Beets-Tan RGH, Lobbes MBI and Smidt ML: TNM classification and the need for revision of pN3a breast cancer. Eur J Cancer. 79:23–30. 2017. View Article : Google Scholar : PubMed/NCBI | |
Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, Hur MH, Diebel ME, Monville F, Dutcher J, et al: Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 69:1302–1313. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Fan J, Chen H, Meng Z, Chen Z, Wang P and Liu L: The IL-8/CXCR1 axis is associated with cancer stem cell-like properties and correlates with clinical prognosis in human pancreatic cancer cases. Sci Rep. 4:59112014. View Article : Google Scholar : PubMed/NCBI | |
Magnifico A, Albano L, Campaner S, Delia D, Castiglioni F, Gasparini P, Sozzi G, Fontanella E, Menard S and Tagliabue E: Tumor-initiating cells of HER2-positive carcinoma cell lines express the highest oncoprotein levels and are sensitive to trastuzumab. Clin Cancer Res. 15:2010–2021. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cameron D, Casey M, Press M, Lindquist D, Pienkowski T, Romieu CG, Chan S, Jagiello-Gruszfeld A, Kaufman B, Crown J, et al: A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: Updated efficacy and biomarker analyses. Breast Cancer Res Treat. 112:533–543. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fernando RI, Castillo MD, Litzinger M, Hamilton DH and Palena C: IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells. Cancer Res. 71:5296–5306. 2011. View Article : Google Scholar : PubMed/NCBI | |
Singh JK, Farnie G, Bundred NJ, Simões BM, Shergill A, Landberg G, Howell SJ and Clarke RB: Targeting CXCR1/2 significantly reduces breast cancer stem cell activity and increases the efficacy of inhibiting HER2 via HER2-dependent and -independent mechanisms. Clin Cancer Res. 19:643–656. 2013. View Article : Google Scholar : PubMed/NCBI | |
Harrison H, Farnie G, Howell SJ, Rock RE, Stylianou S, Brennan KR, Bundred NJ and Clarke RB: Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res. 70:709–718. 2010. View Article : Google Scholar : PubMed/NCBI | |
Luo M, Fan H, Nagy T, Wei H, Wang C, Liu S, Wicha MS and Guan JL: Mammary epithelial-specific ablation of the focal adhesion kinase suppresses mammary tumorigenesis by affecting mammary cancer stem/progenitor cells. Cancer Res. 69:466–474. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F, Korkaya H, Heath A, Dutcher J, Kleer CG, et al: Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res. 71:614–624. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li HJ, Reinhardt F, Herschman HR and Weinberg RA: Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discov. 2:840–855. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M, Wicinski J, Cabaud O, Charafe-Jauffret E, Birnbaum D, et al: CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest. 120:485–497. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Tu L, Du C, Xie X, Liu Y, Wang J, Li Z, Jiang M, Cao D, Yan X and Luo F: CXCR2 is a novel cancer stem-like cell marker for triple-negative breast cancer. Onco Targets Ther. 11:5559–5567. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kumar S, Wilkes DW, Samuel N, Blanco MA, Nayak A, Alicea-Torres K, Gluck C, Sinha S, Gabrilovich D and Chakrabarti R: ΔNp63-driven recruitment of myeloid-derived suppressor cells promotes metastasis in triple-negative breast cancer. J Clin Invest. 128:5095–5109. 2018. View Article : Google Scholar : PubMed/NCBI | |
Uddin MM, Zou Y, Sharma T, Gatla HR and Vancurova I: Proteasome inhibition induces IKK-dependent interleukin-8 expression in triple negative breast cancer cells: Opportunity for combination therapy. PLoS One. 13:e02018582018. View Article : Google Scholar : PubMed/NCBI | |
Schott AF, Goldstein LJ, Cristofanilli M, Ruffini PA, McCanna S, Reuben JM, Perez RP, Kato G and Wicha M: Phase Ib pilot study to evaluate reparixin in combination with weekly paclitaxel in patients with HER-2-negative metastatic breast cancer. Clin Cancer Res. 23:5358–5365. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jones SA, Moser B and Thelen M: A comparison of post-receptor signal transduction events in Jurkat cells transfected with either IL-8R1 or IL-8R2. Chemokine mediated activation of p42/p44 MAP-kinase (ERK-2). FEBS Lett. 364:211–214. 1995. View Article : Google Scholar : PubMed/NCBI | |
Xue MQ, Liu J, Sang JF, Su L and Yao YZ: Expression characteristic of CXCR1 in different breast tissues and the relevance between its expression and efficacy of neo-adjuvant chemotherapy in breast cancer. Oncotarget. 8:48930–48937. 2017.PubMed/NCBI | |
Ruffini PA: The CXCL8-CXCR1/2 axis as a Therapeutic target in breast cancer stem-like cells. Front Oncol. 9:402019. View Article : Google Scholar : PubMed/NCBI | |
Murugan AK, Grieco M and Tsuchida N: RAS mutations in human cancers: Roles in precision medicine. Semin Cancer Biol. Jun 27–2019.(Epub ahead of print). View Article : Google Scholar | |
Kufareva I, Salanga CL and Handel TM: Chemokine and chemokine receptor structure and interactions: Implications for therapeutic strategies. Immunol Cell Biol. 93:372–383. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ning Y, Labonte MJ, Zhang W, Bohanes PO, Gerger A, Yang D, Benhaim L, Paez D, Rosenberg DO, Nagulapalli Venkata KC, et al: The CXCR2 antagonist, SCH-527123, shows antitumor activity and sensitizes cells to oxaliplatin in preclinical colon cancer models. Mol Cancer Ther. 11:1353–1364. 2012. View Article : Google Scholar : PubMed/NCBI | |
Singh S, Sadanandam A, Nannuru KC, Varney ML, Mayer-Ezell R, Bond R and Singh RK: Small-molecule antagonists for CXCR2 and CXCR1 inhibit human melanoma growth by decreasing tumor cell proliferation, survival, and angiogenesis. Clin Cancer Res. 15:2380–2386. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Peng J, Sun W, Yang S, Deng G, Li F, Cheng JW and Gordon JR: G31P, an antagonist against CXC chemokine receptors 1 and 2, inhibits growth of human prostate cancer cells in nude mice. Tohoku J Exp Med. 228:147–156. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bieche I, Chavey C, Andrieu C, Busson M, Vacher S, Le Corre L, Guinebretière JM, Burlinchon S, Lidereau R and Lazennec G: CXC chemokines located in the 4q21 region are up-regulated in breast cancer. Endocr Relat Cancer. 14:1039–1052. 2007. View Article : Google Scholar : PubMed/NCBI | |
Varney ML, Singh S, Li A, Mayer-Ezell R, Bond R and Singh RK: Small molecule antagonists for CXCR2 and CXCR1 inhibit human colon cancer liver metastases. Cancer Lett. 300:180–188. 2011. View Article : Google Scholar : PubMed/NCBI | |
Brandolini L, Cristiano L, Fidoamore A, De Pizzol M, Di Giacomo E, Florio TM, Confalone G, Galante A, Cinque B, Benedetti E, et al: Targeting CXCR1 on breast cancer stem cells: Signaling pathways and clinical application modelling. Oncotarget. 6:43375–43394. 2015. View Article : Google Scholar : PubMed/NCBI | |
Steele CW, Karim SA, Leach JDG, Bailey P, Upstill-Goddard R, Rishi L, Foth M, Bryson S, McDaid K, Wilson Z, et al: CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell. 29:832–845. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hirose K, Hakozaki M, Nyunoya Y, Kobayashi Y, Matsushita K, Takenouchi T, Mikata A, Mukaida N and Matsushima K: Chemokine gene transfection into tumour cells reduced tumorigenicity in nude mice in association with neutrophilic infiltration. Br J Cancer. 72:708–714. 1995. View Article : Google Scholar : PubMed/NCBI | |
Nair P, Gaga M, Zervas E, Alagha K, Hargreave FE, O'Byrne PM, Stryszak P, Gann L, Sadeh J and Chanez P; Study Investigators, : Safety and efficacy of a CXCR2 antagonist in patients with severe asthma and sputum neutrophils: A randomized, placebo-controlled clinical trial. Clin Exp Allergy. 42:1097–1103. 2012. View Article : Google Scholar : PubMed/NCBI | |
Allegretti M, Cesta MC, Garin A and Proudfoot AE: Current status of chemokine receptor inhibitors in development. Immunol Lett. 145:68–78. 2012. View Article : Google Scholar : PubMed/NCBI | |
Maroulakou IG, Oemler W, Naber SP and Tsichlis PN: Akt1 ablation inhibits, whereas Akt2 ablation accelerates, the development of mammary adenocarcinomas in mouse mammary tumor virus (MMTV)-ErbB2/neu and MMTV-polyoma middle T transgenic mice. Cancer Res. 67:167–177. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Radisky DC, Nelson CM, Zhang H, Fata JE, Roth RA and Bissell MJ: Mechanism of Akt1 inhibition of breast cancer cell invasion reveals a protumorigenic role for TSC2. Proc Natl Acad Sci USA. 103:4134–4139. 2006. View Article : Google Scholar : PubMed/NCBI | |
Li B, Hou D, Guo H, Zhou H, Zhang S, Xu X, Liu Q, Zhang X, Zou Y, Gong Y and Shao C: Resveratrol sequentially induces replication and oxidative stresses to drive p53-CXCR2 mediated cellular senescence in cancer cells. Sci Rep. 7:2082017. View Article : Google Scholar : PubMed/NCBI |