1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Siegel R, DeSantis C, Virgo K, Stein K,
Mariotto A, Smith T, Cooper D, Gansler T, Lerro C, Fedewa S, et al:
Cancer treatment and survivorship statistics, 2012. CA Cancer J
Clin. 62:220–241. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kibble A, Al-Shamahi A, Kuennemann K,
Marqués F, Tremosa L and Cole P: Highlights from the 52nd Annual
Meeting of the American Society of Clinical Oncology (ASCO) (June
3–7, 2016-Chicago, Illinois, USA). Drugs Today (Barc). 52:407–423.
2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Xie S, Huang J, Qiao Q, Zang W, Hong S,
Tan H, Dong C, Yang Z and Ni L: Expression of the inhibitory B7
family molecule VISTA in human colorectal carcinoma tumors. Cancer
Immunol Immunother. 67:1685–1694. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhu J, Chen L, Zou L, Yang P, Wu R, Mao Y,
Zhou H, Li R, Wang K, Wang W, et al: MiR-20b, −21, and −130b
inhibit PTEN expression resulting in B7-H1 over-expression in
advanced colorectal cancer. Hum Immunol. 75:348–353. 2014.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Masugi Y, Nishihara R, Yang J, Mima K, da
Silva A, Shi Y, Inamura K, Cao Y, Song M, Nowak JA, et al: Tumour
CD274 (PD-L1) expression and T cells in colorectal cancer. Gut.
66:1463–1473. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Koopman M, Kortman GA, Mekenkamp L,
Ligtenberg MJ, Hoogerbrugge N, Antonini NF, Punt CJ and van Krieken
JH: Deficient mismatch repair system in patients with sporadic
advanced colorectal cancer. Br J Cancer. 100:266–273. 2009.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Venderbosch S, Nagtegaal ID, Maughan TS,
Smith CG, Cheadle JP, Fisher D, Kaplan R, Quirke P, Seymour MT,
Richman SD, et al: Mismatch repair status and BRAF mutation status
in metastatic colorectal cancer patients: A pooled analysis of the
CAIRO, CAIRO2, COIN, and FOCUS studies. Clin Cancer Res.
20:5322–5330. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Le DT, Uram JN, Wang H, Bartlett BR,
Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et
al: PD-1 blockade in tumors with mismatch-repair deficiency. N Engl
J Med. 372:2509–2520. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Chen DS and Mellman I: Elements of cancer
immunity and the cancer-immune set point. Nature. 541:321–330.
2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
De Smedt L, Lemahieu J, Palmans S, Govaere
O, Tousseyn T, Van Cutsem E, Prenen H, Tejpar S, Spaepen M,
Matthijs G, et al: Microsatellite instable vs. stable colon
carcinomas: Analysis of tumor heterogeneity, inflammation and
angiogenesis. Br J Cancer. 113:500–509. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Llosa NJ, Cruise M, Tam A, Wicks EC,
Hechenbleikner EM, Taube JM, Blosser RL, Fan H, Wang H, Luber BS,
et al: The vigorous immune microenvironment of microsatellite
instable colon cancer is balanced by multiple counter-inhibitory
checkpoints. Cancer Discov. 5:43–51. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Beauchamp EM, Abedin SM, Radecki SG,
Fischietti M, Arslan AD, Blyth GT, Yang A, Lantz C, Nelson A, Goo
YA, et al: Identification and targeting of novel CDK9 complexes in
acute myeloid leukemia. Blood. 133:1171–1185. 2019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ma H, Seebacher NA, Hornicek FJ and Duan
Z: Cyclin-dependent kinase 9 (CDK9) is a novel prognostic marker
and therapeutic target in osteosarcoma. EBioMedicine. 39:182–193.
2019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Rahaman MH, Lam F, Zhong L, Teo T, Adams
J, Yu M, Milne RW, Pepper C, Lokman NA, Ricciardelli C, et al:
Targeting CDK9 for treatment of colorectal cancerMol Oncol;
2019
|
16
|
Chaiyapan W, Duangpakdee P,
Boonpipattanapong T, Kanngern S and Sangkhathat S: Somatic
mutations of K-ras and BRAF in Thai colorectal cancer and their
prognostic value. Asian Pac J Cancer Prev. 14:329–332. 2013.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Novellasdemunt L, Antas P and Li VS:
Targeting Wnt signaling in colorectal cancer. A Review in the
Theme: Cell Signaling: Proteins, Pathways and Mechanisms. Am J
Physiol Cell Physiol. 309:C511–C521. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Fleming NI, Jorissen RN, Mouradov D,
Christie M, Sakthianandeswaren A, Palmieri M, Day F, Li S, Tsui C,
Lipton L, et al: SMAD2, SMAD3 and SMAD4 mutations in colorectal
cancer. Cancer Res. 73:725–735. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Choi SH, Estarás C, Moresco JJ, Yates JR
III and Jones KA: α-Catenin interacts with APC to regulate
β-catenin proteolysis and transcriptional repression of Wnt target
genes. Genes Dev. 27:2473–2488. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Alarcón C, Zaromytidou AI, Xi Q, Gao S, Yu
J, Fujisawa S, Barlas A, Miller AN, Manova-Todorova K, Macias MJ,
et al: Nuclear CDKs drive Smad transcriptional activation and
turnover in BMP and TGF-beta pathways. Cell. 139:757–769. 2009.
View Article : Google Scholar : PubMed/NCBI
|
21
|
De Falco G, Leucci E, Onnis A, Bellan C,
Tigli C, Wirths S, Cerino G, Cocco M, Crupi D, De Luca A, et al:
Cdk9/Cyclin T1 complex: A key player during the
activation/differentiation process of normal lymphoid B cells. J
Cell Physiol. 215:276–282. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kanazawa S, Okamoto T and Peterlin BM: Tat
competes with CIITA for the binding to P-TEFb and blocks the
expression of MHC class II genes in HIV infection. Immunity.
12:61–70. 2000. View Article : Google Scholar : PubMed/NCBI
|
23
|
Marshall RM, Salerno D, Garriga J and
Graña X: Cyclin T1 expression is regulated by multiple signaling
pathways and mechanisms during activation of human peripheral blood
lymphocytes. J Immunol. 175:6402–6411. 2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Tang Z, Li C, Kang B, Gao G, Li C and
Zhang Z: GEPIA: A web server for cancer and normal gene expression
profiling and interactive analyses. Nucleic Acids Res. 45:W98–W102.
2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li T, Fan J, Wang B, Traugh N, Chen Q, Liu
JS, Li B and Liu XS: TIMER: A web server for comprehensive analysis
of tumor-infiltrating immune cells. Cancer Res. 77:e108–e110. 2017.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Szklarczyk D, Morris JH, Cook H, Kuhn M,
Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, et al:
The STRING database in 2017: Quality-controlled protein-protein
association networks, made broadly accessible. Nucleic Acids Res.
45:D362–D368. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Gupta S, Provenzale D, Regenbogen SE,
Hampel H, Slavin TP, Hall MJ, Llor X, Chung DC, Ahnen DJ, Bray T,
et al: NCCN guidelines insights: Genetic/Familial high-risk
assessment: Colorectal, version 3.2017. J Natl Compr Canc Netw.
15:1465–1475. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hu H, Krasinskas A and Willis J:
Perspectives on current tumor-node-metastasis (TNM) staging of
cancers of the colon and rectum. Semin Oncol. 38:500–510. 2011.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Lee YH, Martin-Orozco N, Zheng P, Li J,
Zhang P, Tan H, Park HJ, Jeong M, Chang SH, Kim BS, et al:
Inhibition of the B7-H3 immune checkpoint limits tumor growth by
enhancing cytotoxic lymphocyte function. Cell Res. 27:1034–1045.
2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Park JH, Kim MJ, Park SC, Kim MJ, Hong CW,
Sohn DK, Han KS and Oh JH: Difference in time to locoregional
recurrence between patients with right-sided and left-sided colon
cancers. Dis Colon Rectum. 58:831–837. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Meguid RA, Slidell MB, Wolfgang CL, Chang
DC and Ahuja N: Is there a difference in survival between right-
versus left-sided colon cancers? Ann Surg Oncol. 15:2388–2394.
2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Feig C, Jones JO, Kraman M, Wells RJ,
Deonarine A, Chan DS, Connell CM, Roberts EW, Zhao Q, Caballero OL,
et al: Targeting CXCL12 from FAP-expressing carcinoma-associated
fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic
cancer. Proc Natl Acad Sci USA. 110:20212–20217. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zboralski D, Hoehlig K, Eulberg D,
Frömming A and Vater A: Increasing tumor-infiltrating T cells
through inhibition of CXCL12 with NOX-A12 synergizes with PD-1
blockade. Cancer Immunol Res. 5:950–956. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Minzel W, Venkatachalam A, Fink A, Hung E,
Brachya G, Burstain I, Shaham M, Rivlin A, Omer I, Zinger A, et al:
Small molecules Co-targeting CKIα and the transcriptional kinases
CDK7/9 control AML in preclinical models. Cell.
175:171.e25–185.e25. 2018. View Article : Google Scholar
|
35
|
Rahaman MH, Yu Y, Zhong L, Adams J, Lam F,
Li P, Noll B, Milne R, Peng J and Wang S: CDKI-73: An orally
bioavailable and highly efficacious CDK9 inhibitor against acute
myeloid leukemia. Invest New Drugs. 37:625–635. 2019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Morales F and Giordano A: Overview of CDK9
as a target in cancer research. Cell Cycle. 15:519–527. 2016.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Yin T, Lallena MJ, Kreklau EL, Fales KR,
Carballares S, Torrres R, Wishart GN, Ajamie RT, Cronier DM,
Iversen PW, et al: A novel CDK9 inhibitor shows potent antitumor
efficacy in preclinical hematologic tumor models. Mol Cancer Ther.
13:1442–1456. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Abdullah C, Wang X and Becker D:
Expression analysis and molecular targeting of cyclin-dependent
kinases in advanced melanoma. Cell Cycle. 10:977–988. 2011.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Narita T, Ishida T, Ito A, Masaki A,
Kinoshita S, Suzuki S, Takino H, Yoshida T, Ri M, Kusumoto S, et
al: Cyclin-dependent kinase 9 is a novel specific molecular target
in adult T-cell leukemia/lymphoma. Blood. 130:1114–1124. 2017.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Yik JH, Hu Z, Kumari R, Christiansen BA
and Haudenschild DR: Cyclin-dependent kinase 9 inhibition protects
cartilage from the catabolic effects of proinflammatory cytokines.
Arthritis Rheumatol. 66:1537–1546. 2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Brenner H, Kloor M and Pox CP: Colorectal
cancer. Lancet. 383:1490–1502. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Sleightholm RL, Neilsen BK, Li J, Steele
MM, Singh RK, Hollingsworth MA and Oupicky D: Emerging roles of the
CXCL12/CXCR4 axis in pancreatic cancer progression and therapy.
Pharmacol Ther. 179:158–170. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Song ZY, Wang F, Cui SX, Gao ZH and Qu XJ:
CXCR7/CXCR4 heterodimer-induced histone demethylation: A new
mechanism of colorectal tumorigenesis. Oncogene. 38:1560–1575.
2019. View Article : Google Scholar : PubMed/NCBI
|
44
|
Liu L, Zhao L, Yang Y, Gao J, Hu C, Guo B
and Zhu B: Cytotoxic chemotherapy reduces T cell trafficking to the
spleen by downregulating the expression of C-C motif chemokine
ligand 21 and C-C motif chemokine ligand 19. Oncol Lett.
16:5013–5019. 2018.PubMed/NCBI
|
45
|
Kim PS and Ahmed R: Features of responding
T cells in cancer and chronic infection. Curr Opin Immunol.
22:223–230. 2010. View Article : Google Scholar : PubMed/NCBI
|
46
|
Baitsch L, Fuertes-Marraco SA, Legat A,
Meyer C and Speiser DE: The three main stumbling blocks for
anticancer T cells. Trends Immunol. 33:364–372. 2012. View Article : Google Scholar : PubMed/NCBI
|
47
|
Martinez GJ, Pereira RM, Äijö T, Kim EY,
Marangoni F, Pipkin ME, Togher S, Heissmeyer V, Zhang YC, Crotty S,
et al: The transcription factor NFAT promotes exhaustion of
activated CD8+ T cells. Immunity. 42:265–278. 2015.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Liu J, Zhang S, Hu Y, Yang Z, Li J, Liu X,
Deng L, Wang Y, Zhang X, Jiang T and Lu X: Targeting PD-1 and Tim-3
pathways to reverse CD8 T-cell exhaustion and enhance ex
vivo T-cell responses to autologous dendritic/tumor vaccines. J
Immunother. 39:171–180. 2016. View Article : Google Scholar : PubMed/NCBI
|
49
|
Franco LC, Morales F, Boffo S and Giordano
A: CDK9: A key player in cancer and other diseases. J Cell Biochem.
119:1273–1284. 2018. View Article : Google Scholar : PubMed/NCBI
|
50
|
Boquoi A, Chen T and Enders GH:
Chemoprevention of mouse intestinal tumorigenesis by the
cyclin-dependent kinase inhibitor SNS-032. Cancer Prev Res (Phila).
2:800–806. 2009. View Article : Google Scholar : PubMed/NCBI
|
51
|
Zhan Y, Han Y, Sun H, Liang T, Zhang C,
Song J and Hou G: Down-regulating cyclin-dependent kinase 9 of
alloreactive CD4+ T cells prolongs allograft survival. Oncotarget.
7:24983–24994. 2016. View Article : Google Scholar : PubMed/NCBI
|