1
|
Pachler J and Wille-Jørgensen P: Quality
of life after rectal resection for cancer, with or without
permanent colostomy. Cochrane Database Syst Rev.
12:CD0043232012.PubMed/NCBI
|
2
|
Sarver AL, Li L and Subramanian S:
MicroRNA miR-183 functions as an oncogene by targeting the
transcription factor EGR1 and promoting tumor cell migration.
Cancer Res. 70:9570–9580. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Liu Y, Zhang H, Zhou K, Chen L, Xu Z,
Zhong Y, Liu H, Li R, Shugart YY, Wei Q, et al: Tagging SNPs in
non-homologous end-joining pathway genes and risk of glioma.
Carcinogenesis. 28:1906–1913. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Liu Y, Zhou K, Zhang H, Shugart YY, Chen
L, Xu Z, Zhong Y, Liu H, Jin L, Wei Q, et al: Polymorphisms of LIG4
and XRCC4 involved in the NHEJ pathway interact to modify risk of
glioma. Hum Mutat. 29:381–389. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Liu Y, Shete S, Etzel CJ, Scheurer M,
Alexiou G, Armstrong G, Tsavachidis S, Liang FW, Gilbert M, Aldape
K, et al: Polymorphisms of LIG4, BTBD2, HMGA2, and RTEL1 genes
involved in the double-strand break repair pathway predict
glioblastoma survival. J Clin Oncol. 28:2467–2474. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Soussi T and Béroud C: Assessing TP53
status in human tumours to evaluate clinical outcome. Nat Rev
Cancer. 1:233–240. 2001. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Bénard J, Douc-Rasy S and Ahomadegbe JC:
TP53 family members and human cancers. Hum Mutat. 21:182–191. 2003.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Li D, Suzuki H, Liu B, Morris J, Liu J,
Okazaki T, Li Y, Chang P and Abbruzzese JL: DNA repair gene
polymorphisms and risk of pancreatic cancer. Clin Cancer Res.
15:740–746. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Liu H and Zhou M: Evaluation of p53 gene
expression and prognosis characteristics in uveal melanoma cases.
Onco Targets Ther. 10:3429–3434. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Chava S, Mohan V, Shetty PJ, Manolla ML,
Vaidya S, Khan IA, Waseem GL, Boddala P, Ahuja YR and Hasan Q:
Immunohistochemical evaluation of p53, FHIT, and IGF2 gene
expression in esophageal cancer. Dis Esophagus. 25:81–87. 2012.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Vogelstein B, Lane D and Levine AJ:
Surfing the p53 network. Nature. 408:307–310. 2000. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tefre T, Ryberg D, Haugen A, Nebert DW,
Skaug V, Brøgger A and Børresen AL: Human CYP1A1 (cytochrome P
(1)450) gene: Lack of association between the Msp I restriction
fragment length polymorphism and incidence of lung cancer in a
Norwegian population. Pharmacogenetics. 1:20–25. 1991. View Article : Google Scholar : PubMed/NCBI
|
13
|
Slattery ML, Samowtiz W, Ma K, Murtaugh M,
Sweeney C, Levin TR and Neuhausen S: CYP1A1, cigarette smoking, and
colon and rectal cancer. Am J Epidemiol. 160:842–852. 2004.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Kiyohara C, Washio M, Horiuchi T, Asami T,
Ide S, Atsumi T, Kobashi G, Takahashi H and Tada Y; Kyushu Sapporo
SLE (KYSS) Study Group, : Risk modification by CYP1A1 and GSTM1
polymorphisms in the association of cigarette smoking and systemic
lupus erythematosus in a Japanese population. Scand J Rheumatol.
41:103–109. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Goodman JE, Mechanic LE, Luke BT, Ambs S,
Chanock S and Harris CC: Exploring SNP-SNP interactions and colon
cancer risk using polymorphism interaction analysis. Int J Cancer.
118:1790–1797. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tan XL, Nieters A, Hoffmeister M, Beckmann
L, Brenner H and Chang-Claude J: Genetic polymorphisms in Tp53,
nonsteroidal anti-inflammatory drugs and the risk of colorectal
cancer: Evidence for gene-environment interaction? Pharmacogenet
Genomics. 17:639–645. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Li XL, Zhou J, Chen ZR and Chng WJ: P53
mutations in colorectal cancer-molecular pathogenesis and
pharmacological reactivation. World J Gastroenterol. 21:84–93.
2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kahlenberg MS, Stoler DL, Rodriguez-Bigas
MA, Weber TK, Driscoll DL, Anderson GR and Petrelli NJ: p53 tumor
suppressor gene mutations predict decreased survival of patients
with sporadic colorectal carcinoma. Cancer. 88:1814–1819. 2000.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Mulder JW, Baas IO, Polak MM, Goodman SN
and Offerhaus GJ: Evaluation of p53 protein expression as a marker
for long-term prognosis in colorectal carcinoma. Br J Cancer.
71:1257–1262. 1995. View Article : Google Scholar : PubMed/NCBI
|
20
|
Erhan Y, Korkut MA, Kara E, Aydede H,
Sakarya A and Ilkgü O: Value of p53 protein expression and its
relationship with short-term prognosis in colorectal cancer. Ann
Saudi Med. 22:377–380. 2002. View Article : Google Scholar : PubMed/NCBI
|
21
|
Glimelius B, Tiret E, Cervantes A and
Arnold D; ESMO Guidelines Working Group, : Rectal cancer: ESMO
clinical practice guidelines for diagnosis, treatment and
follow-up. Ann Oncol. 24 (Suppl 6):vi81–vi88. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Albibas AA, Rose-Zerilli MJJ, Lai C,
Pengelly RJ, Lockett GA, Theaker J, Ennis S, Holloway JW and Healy
E: Subclonal evolution of cancer-related gene mutations in p53
immunopositive patches in human skin. J Invest Dermatol.
138:189–198. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Duffy MJ, Synnott NC and Crown J: Mutant
p53 as a target for cancer treatment. Eur J Cancer. 83:258–265.
2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Jen J, Lin LL, Lo FY, Chen HT, Liao SY,
Tang YA, Su WC, Salgia R, Hsu CL, Huang HC, et al: Oncoprotein
ZNF322A transcriptionally deregulates alpha-adducin, cyclin D1 and
p53 to promote tumor growth and metastasis in lung cancer.
Oncogene. 36:52192017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chaudhary R, Gryder B, Woods WS,
Subramanian M, Jones MF, Li XL, Jenkins LM, Shabalina SA, Mo M,
Dasso M, et al: Prosurvival long noncoding RNA PINCR regulates a
subset of p53 targets in human colorectal cancer cells by binding
to Matrin 3. Elife. 6(pii): e232442017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Jiang Z, Hennein L, Xu Y, Bao N, Coh P and
Tao L: Elevated serum monocyte chemoattractant protein-1 levels and
its genetic polymorphism is associated with diabetic retinopathy in
Chinese patients with type 2 diabetes. Diabet Med. 33:84–690. 2016.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Zlotorynski E: Cancer biology: A Neat
target of p53. Nat Rev Mol Cell Biol. 18:5322017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Boiocchi C, Osera C, Monti MC, Ferraro OE,
Govoni S, Cuccia M, Montomoli C, Pascale A and Bergamaschi R: Are
Hsp70 protein expression and genetic polymorphism implicated in
multiple sclerosis inflammation? J Neuroimmunol. 268:84–88. 2014.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Yao C, Li G, Cai M, Qian Y, Wang L, Xiao
L, Thaiss F and Shi B: Expression and genetic polymorphism of
necroptosis related protein RIPK1 is correlated with severe hepatic
ischemia-reperfusion injury and prognosis after hepatectomy in
hepatocellular carcinoma patients. Cancer Biomark. 20:23–29. 2017.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Naccarati A, Polakova V, Pardini B,
Vodickova L, Hemminki K, Kumar R and Vodicka P: Mutations and
polymorphisms in TP53 gene-an overview on the role in colorectal
cancer. Mutagenesis. 27:211–218. 2012. View Article : Google Scholar : PubMed/NCBI
|