1
|
Keshelava N, Davicioni E, Wan Z, Ji L,
Sposto R, Triche TJ and Reynolds CP: Histone deacetylase 1 gene
expression and sensitization of multidrug-resistant neuroblastoma
cell lines to cytotoxic agents by depsipeptide. J Natl Cancer Inst.
99:1107–1119. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chowdhury F, Lode HN, Cragg MS, Glennie MJ
and Gray JC: Development of immunomonitoring of antibody-dependent
cellular cytotoxicity against neuroblastoma cells using whole
blood. Cancer Immunol Immunother. 63:559–569. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Cotterill SJ, Pearson AD, Pritchard J,
Foot AB, Roald B, Kohler JA and Imeson J: Clinical prognostic
factors in 1277 patients with neuroblastoma: Results of the
European neuroblastoma study group ‘survey’ 1982–1992. Eur J
Cancer. 36:901–908. 2000. View Article : Google Scholar : PubMed/NCBI
|
4
|
Maris JM: Recent advances in
neuroblastoma. N Engl J Med. 362:2202–2211. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Yamamoto N, Kozaki A, Hartomo TB, Yanai T,
Hasegawa D, Kawasaki K, Kosaka Y, Matsuo M, Hirase S, Mori T, et
al: Differential expression of minimal residual disease markers in
peripheral blood and bone marrow samples from high-risk
neuroblastoma patients. Oncol Lett. 10:3228–3232. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Carr-Wilkinson J, O'Toole K, Wood KM,
Challen CC, Baker AG, Board JR, Evans L, Cole M, Cheung NK, Boos J,
et al: High frequency of p53/mdm2/p14arf pathway abnormalities in
relapsed neuroblastoma. Clin Cancer Res. 16:1108–1118. 2010.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Gillet JP, Efferth T and Remacle J:
Chemotherapy-induced resistance by atp-binding cassette transporter
genes. Biochim Biophys Acta. 1775:237–262. 2007.PubMed/NCBI
|
8
|
Jackson JR, Kim Y, Seeger RC and Kim ES: A
novel minimal residual disease model of neuroblastoma in mice. J
Pediatr Surg. 51:991–994. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Tchirkov A, Greze V, Plantaz D, Rouel N,
Vago P and Kanold J: Very long-term molecular follow-up of minimal
residual disease in patients with neuroblastoma. Pediatr Blood
Cancer. 65:e274042018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Haber M, Smith J, Bordow SB, Flemming C,
Cohn SL, London WB, Marshall GM and Norris MD: Association of
high-level mrp1 expression with poor clinical outcome in a large
prospective study of primary neuroblastoma. J Clin Oncol.
24:1546–1553. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
D'Aguanno S, D'Alessandro A, Pieroni L,
Roveri A, Zaccarin M, Marzano V, De Canio M, Bernardini S, Federici
G and Urbani A: New insights into neuroblastoma cisplatin
resistance: A comparative proteomic and meta-mining investigation.
J Proteome Res. 10:416–428. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Iwasaki I, Sugiyama H, Kanazawa S and
Hemmi H: Establishment of cisplatin-resistant variants of human
neuroblastoma cell lines, tgw and goto, and their drug
cross-resistance profiles. Cancer Chemother Pharmacol. 49:438–444.
2002. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hakomori S: Tumor-associated carbohydrate
antigens defining tumor malignancy: Basis for development of
anti-cancer vaccines. Adv Exp Med Biol. 491:369–402. 2001.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Allende ML and Proia RL: Lubricating cell
signaling pathways with gangliosides. Curr Opin Struct Biol.
12:587–592. 2002. View Article : Google Scholar : PubMed/NCBI
|
15
|
Regina Todeschini A and Hakomori SI:
Functional role of glycosphingolipids and gan-gliosides in control
of cell adhesion, motility, and growth, through glycosy-naptic
microdomains. Biochim Biophys Acta. 1780:421–433. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wu ZL, Schwartz E, Seeger R and Ladisch S:
Expression of GD2 ganglioside by untreated primary human
neuroblastomas. Cancer Res. 46:440–443. 1986.PubMed/NCBI
|
17
|
Ahmed M and Cheung NK: Engineering
anti-GD2 monoclonal antibodies for cancer immunotherapy. FEBS Lett.
588:288–297. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Simon T, Hero B, Faldum A, Handgretinger
R, Schrappe M, Niethammer D and Berthold F: Consolidation treatment
with chimeric anti-GD2-antibody ch14.18 in children older than 1
year with metastatic neuroblastoma. J Clin Oncol. 22:3549–3557.
2004. View Article : Google Scholar : PubMed/NCBI
|
19
|
Sait S and Modak S: Anti-GD2 immunotherapy
for neuroblastoma. Expert Rev Anticancer Ther. 17:889–904. 2017.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Tran HC, Wan Z, Sheard MA, Sun J, Jackson
JR, Malvar J, Xu Y, Wang L, Sposto R, Kim ES, et al: TGFβR1
blockade with galunisertib (LY2157299) enhances anti-neuroblastoma
activity of the anti-GD2 antibody dinutuximab (ch14.18) with
natural killer cells. Clin Cancer Res. 23:804–813. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ladenstein R, Pötschger U, Valteau-Couanet
D, Luksch R, Castel V, Yaniv I, Laureys G, Brock P, Michon JM,
Owens C, et al: Interleukin 2 with anti-GD2 antibody ch14.18/CHO
(dinutuximab beta) in patients with high-risk neuroblastoma
(HR-NBL1/SIOPEN): A multicentre, randomised, phase 3 trial. Lancet
Oncol. 19:1617–1629. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Modak S and Cheung NK: Disialoganglioside
directed immunotherapy of neuroblastoma. Cancer Invest. 25:67–77.
2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cheung NK, Cheung IY, Kushner BH,
Ostrovnaya I, Chamberlain E, Kramer K and Modak S: Murine anti-GD2
monoclonal antibody 3F8 combined with granulocyte-macrophage
colony-stimulating factor and 13-cis-retinoic acid in high-risk
patients with stage 4 neuroblastoma in first remission. J Clin
Oncol. 30:3264–3270. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Federico SM, McCarville MB, Shulkin BL,
Sondel PM, Hank JA, Hutson P, Meagher M, Shafer A, Ng CY, Leung W,
et al: A pilot trial of humanized anti-GD2 monoclonal antibody
(hu14.18K322A) with chemotherapy and natural killer cells in
children with recurrent/refractory neuroblastoma. Clin Cancer Res.
23:6441–6449. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Sorkin LS, Otto M, Baldwin WM III, Vail E,
Gillies SD, Handgretinger R, Barfield RC, Ming Yu H and Yu AL:
Anti-GD(2) with an FC point mutation reduces complement fixation
and decreases antibody-induced allodynia. Pain. 149:135–142. 2010.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Xu H, Guo H, Cheung IY and Cheung NK:
Antitumor efficacy of anti-GD2 IgG1 is enhanced by fc
glyco-engineering. Cancer Immunol Res. 4:631–638. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Cheung IY, Kushner BH, Modak S, Basu EM,
Roberts SS and Cheung NV: Phase I trial of anti-GD2 monoclonal
antibody hu3F8 plus GM-CSF: Impact of body weight, immunogenicity
and anti-GD2 response on pharmacokinetics and survival.
Oncoimmunology. 6:e13583312017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kushner BH, Cheung IY, Modak S, Basu EM,
Roberts SS and Cheung NK: Humanized 3F8 anti-GD2 monoclonal
antibody dosing with granulocyte-macrophage colony-stimulating
factor in patients with resistant neuroblastoma: A phase 1 clinical
trial. JAMA Oncol. 4:1729–1735. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ozkaynak MF, Gilman AL, London WB, Naranjo
A, Diccianni MB, Tenney SC, Smith M, Messer KS, Seeger R, Reynolds
CP, et al: Corrigendum: A comprehensive safety trial of chimeric
antibody 14.18 with GM-CSF, IL-2, and isotretinoin in high-risk
neuroblastoma patients following myeloablative therapy: Children's
oncology group study ANBL0931. Front Immunol. 9:16412018.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Shoae-Hassani A, Hamidieh AA, Behfar M,
Mohseni R, Mortazavi-Tabatabaei SA and Asgharzadeh S: NK
cell-derived exosomes from NK cells previously exposed to
neuroblastoma cells augment the antitumor activity of
cytokine-activated NK cells. J Immunother. 40:265–276. 2017.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Zenarruzabeitia O, Vitallé J, Astigarraga
I and Borrego F: Natural killer cells to the attack: Combination
therapy against neuroblastoma. Clin Cancer Res. 23:615–617. 2017.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Muntasell A, Ochoa MC, Cordeiro L,
Berraondo P, López-Díaz de Cerio A, Cabo M, López-Botet M and
Melero I: Targeting NK-cell checkpoints for cancer immunotherapy.
Curr Opin Immunol. 45:73–81. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Burga RA, Yvon E, Chorvinsky E, Fernandes
R, Cruz CRY and Bollard CM: Engineering the TGFβ receptor to
enhance the therapeutic potential of natural killer cells as an
immunotherapy for neuroblastoma. Clin Cancer Res. 25:4400–4412.
2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Thommesen JE, Michaelsen TE, Loset GA,
Sandlie I and Brekke OH: Lysine 322 in the human IgG3 C (H)2 domain
is crucial for antibody dependent complement activation. Mol
Immunol. 37:995–1004. 2000. View Article : Google Scholar : PubMed/NCBI
|
35
|
Schmeel LC, Schmeel FC, Coch C and
Schmidt-Wolf IG: Cytokine-induced killer (CIK) cells in cancer
immunotherapy: Report of the international registry on CIK cells
(IRCC). J Cancer Res Clin Oncol. 141:839–849. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Schmidt-Wolf IG, Negrin RS, Kiem HP, Blume
KG and Weissman IL: Use of a SCID mouse/human lymphoma model to
evaluate cytokine-induced killer cells with potent antitumor cell
activity. J Exp Med. 174:139–149. 1991. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wu YF, Lin YC, LI Y, Wang XP and Wei J:
Exploratory research of setting an optimal minor-factor culture
system of cytokine-induced killer cells/natural cells. J Sun
Yat-Sen University (Medical Sciences),. 30:361–366. 2009.
|
38
|
Akhter N, Madhoun A, Arefanian H, Wilson
A, Kochumon S, Thomas R, Shenouda S, Al-Mulla F, Ahmad R and Sindhu
S: Oxidative stress induces expression of the toll-like receptors
(TLRs) 2 and 4 in the human peripheral blood mononuclear cells:
Implications for metabolic inflammation. Cell Physiol Biochem.
53:1–18. 2019. View Article : Google Scholar : PubMed/NCBI
|
39
|
Biederbick KD and Schmidt-Wolf IGH:
Efficacy of cytokine-induced killer cells targeting CD40 and GITR.
Oncol Lett. 17:2425–2430. 2019.PubMed/NCBI
|
40
|
Gao D, Cai Y, Chen Y, Li W, Wei CC, Luo X
and Wang Y: Novel TLR7 agonist stimulates activity of CIK/NK
immunological effector cells to enhance antitumor cytotoxicity.
Oncol Lett. 15:5105–5110. 2018.PubMed/NCBI
|
41
|
Pinto NR, Applebaum MA, Volchenboum SL,
Matthay KK, London WB, Ambros PF, Nakagawara A, Berthold F,
Schleiermacher G, Park JR, et al: Advances in risk classification
and treatment strategies for neuroblastoma. J Clin Oncol.
33:3008–3017. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Weinstein JL, Katzenstein HM and Cohn SL:
Advances in the diagnosis and treatment of neuroblastoma.
Oncologist. 8:278–292. 2003. View Article : Google Scholar : PubMed/NCBI
|
43
|
Ning BT, Yu B, Chan S, Chan JL, Huang JD
and Chan GC: Treatment of neuroblastoma with an engineered
‘Obligate’ anaerobic salmonella typhimurium strain YB1. J Cancer.
8:1609–1618. 2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Kholodenko IV, Kalinovsky DV, Doronin II,
Deyev SM and Kholodenko RV: Neuroblastoma origin and therapeutic
targets for immunotherapy. J Immunol Res. 2018:73942682018.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Yu AL, Gilman AL, Ozkaynak MF, London WB,
Kreissman SG, Chen HX, Smith M, Anderson B, Villablanca JG, Matthay
KK, et al: Anti-GD2 antibody with GM-CSF, interleukin-2, and
isotretinoin for neuroblastoma. N Engl J Med. 363:1324–1334. 2010.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Dobrenkov K and Cheung NK: GD2-targeted
immunotherapy and radioimmunotherapy. Semin Oncol. 41:589–612.
2014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Anghelescu DL, Goldberg JL, Faughnan LG,
Wu J, Mao S, Furman WL, Santana VM and Navid F: Comparison of pain
outcomes between two anti-GD2 antibodies in patients with
neuroblastoma. Pediatr Blood Cancer. 62:224–228. 2015. View Article : Google Scholar : PubMed/NCBI
|
48
|
Pan Y, Wu Y, Ji J, Cai H, Wang H, Jiang Y,
Sang L, Yang J, Gao Y, Liu Y, et al: Effect of cytokine-induced
killer cells on immune function in patients with lung cancer. Oncol
Lett. 11:2827–2834. 2016. View Article : Google Scholar : PubMed/NCBI
|
49
|
Sangiolo D, Martinuzzi E, Todorovic M,
Vitaggio K, Vallario A, Jordaney N, Carnevale-Schianca F, Capaldi
A, Geuna M, Casorzo L, et al: Alloreactivity and anti-tumor
activity segregate within two distinct subsets of cytokine-induced
killer (CIK) cells: Implications for their infusion across major
HLA barriers. Int Immunol. 20:841–848. 2008. View Article : Google Scholar : PubMed/NCBI
|
50
|
Kim HM, Lim J, Kang JS, Park SK, Lee K,
Kim JY, Kim YJ, Hong JT, Kim Y and Han SB: Inhibition of human
cervical carcinoma growth by cytokine-induced killer cells in nude
mouse xenograft model. Int Immunopharmacol. 9:375–380. 2009.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Xu YC, Xu Q, Li JJ, Gu XF, Lin XL, Sun L,
Lu HM, Tang L, Ma Y, Lu Z and Wang HX: Chemotherapy with or without
autologous cytokine-induced killer cell transfusion as the
frst-line treatment for stage IV gastrointestinal cancer: A phase
II clinical trial. J Cancer Res Clin Oncol. 142:1315–1323. 2016.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Mueller I, Ehlert K, Endres S, Pill L,
Siebert N, Kietz S, Brock P, Garaventa A, Valteau-Couanet D, Janzek
E, et al: Tolerability, response and outcome of high-risk
neuroblastoma patients treated with long-term infusion of anti-GD2
antibody ch14.18/CHO. MAbs. 10:55–61. 2018. View Article : Google Scholar : PubMed/NCBI
|
53
|
Bonanno G, Iudicone P, Mariotti A, et al:
Thymoglobulin, interferon-g and interleukin-2 efficiently expand
cytokine-induced killer (CIK) cells in clinical-grade cultures. J
Transl Med. 8:1292010. View Article : Google Scholar : PubMed/NCBI
|
54
|
Leemhuis T, Wells S, Scheffold C, Edinger
M and Negrin RS: A phase I trial of autologous cytokine-induced
killer cells for the treatment of relapsed Hodgkin disease and
non-Hodgkin lymphoma. Biol Blood Marrow Transplant. 11:181–187.
2005. View Article : Google Scholar : PubMed/NCBI
|
55
|
Rettinger E, Kreyenberg H, Merker M, Kuçi
S, Willasch A, Bug G, Ullrich E, Wels WS, Bonig H, Klingebiel T and
Bader P: Immunomagnetic selection or irradiation eliminates
alloreactive cells but also reduces anti-tumor potential of
cytokine-induced killer cells: Implications for unmanipulated
cytokine-induced killer cell infusion. Cytotherapy. 16:835–844.
2014. View Article : Google Scholar : PubMed/NCBI
|
56
|
Vantaku V, Donepudi SR, Ambati CR, Jin F,
Putluri V, Nguyen K, Rajapakshe K, Coarfa C, Battula VL, Lotan Y
and Putluri N: Expression of ganglioside GD2, reprogram the lipid
metabolism and EMT phenotype in bladder cancer. Oncotarget.
8:95620–95631. 2017. View Article : Google Scholar : PubMed/NCBI
|
57
|
Orsi G, Barbolini M, Ficarra G, Tazzioli
G, Manni P, Petrachi T, Mastrolia I, Orvieto E, Spano C, Prapa M,
et al: GD2 expression in breast cancer. Oncotarget. 8:31592–31600.
2017. View Article : Google Scholar : PubMed/NCBI
|
58
|
Tesfaye M and Savoldo B: Adoptive cell
therapy in treating pediatric solid tumors. Curr Oncol Rep.
20:732018. View Article : Google Scholar : PubMed/NCBI
|
59
|
Esser R, Müller T, Stefes D, Kloess S,
Seidel D, Gillies SD, Aperlo-Iffland C, Huston JS, Uherek C,
Schönfeld K, et al: NK cells engineered to express a GD2-specific
antigen receptor display built-in ADCC-like activity against tumor
cells of neuroectodermal origin. J Cell Mol Med. 16:569–581. 2012.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Wold ED, Smider VV and Felding BH:
Antibody therapeutics in oncology. Immunotherapy (Los Angel).
2:1082016. View Article : Google Scholar : PubMed/NCBI
|
61
|
Stasiłojć G, Österborg A, Blom AM and
Okrój M: New perspectives on complement mediated immunotherapy.
Cancer Treat Rev. 45:68–75. 2016. View Article : Google Scholar : PubMed/NCBI
|
62
|
Kudo K, Imai C, Lorenzini P, Kamiya T,
Kono K, Davidoff AM, Chng WJ and Campana D: T lymphocytes
expressing a CD16 signaling receptor exert antibody-dependent
cancer cell killing. Cancer Res. 74:93–103. 2014. View Article : Google Scholar : PubMed/NCBI
|
63
|
Seidel D, Shibina A, Siebert N, Wels WS,
Reynolds CP, Huebener N and Lode HN: Disialoganglioside-specific
human natural killer cells are effective against drug-resistant
neuroblastoma. Cancer Immunol Immunother. 64:621–634. 2015.
View Article : Google Scholar : PubMed/NCBI
|