The role of deubiquitinating enzymes in gastric cancer (Review)
- Authors:
- Jiangang Sun
- Xiaojing Shi
- M.A.A. Mamun
- Yongshun Gao
-
Affiliations: Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China, Zhengzhou University School of Pharmaceutical Science, Zhengzhou, Henan 450001, P.R. China - Published online on: November 7, 2019 https://doi.org/10.3892/ol.2019.11062
- Pages: 30-44
-
Copyright: © Sun et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Pidsley R, Lawrence MG, Zotenko E, Niranjan B, Statham A, Song J, Chabanon RM, Qu W, Wang H, Richards M, et al: Enduring epigenetic landmarks define the cancer microenvironment. Genome Res. 28:625–638. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zentner GE and Henikoff S: High-resolution digital profiling of the epigenome. Nat Rev Genet. 15:814–827. 2014. View Article : Google Scholar : PubMed/NCBI | |
Onder O, Sidoli S, Carroll M and Garcia BA: Progress in epigenetic histone modification analysis by mass spectrometry for clinical investigations. Expert Rev Proteomics. 12:499–517. 2015. View Article : Google Scholar : PubMed/NCBI | |
Swatek KN and Komander D: Ubiquitin modifications. Cell Res. 26:399–422. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rogov V, Dotsch V, Johansen T and Kirkin V: Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell. 53:167–178. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hershko A: Ubiquitin: Roles in protein modification and breakdown. Cell. 34:11–12. 1983. View Article : Google Scholar : PubMed/NCBI | |
Pickart CM: Mechanisms underlying ubiquitination. Annu Rev Biochem. 70:503–533. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hershko A and Ciechanover A: The ubiquitin system. Annu Rev Biochem. 67:425–479. 1998. View Article : Google Scholar : PubMed/NCBI | |
Finley D, Ciechanover A and Varshavsky A: Ubiquitin as a central cellular regulator. Cell. 116 (Suppl 2):S29–S32. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhou MJ, Chen FZ and Chen HC: Ubiquitination involved enzymes and cancer. Med Oncol. 31:932014. View Article : Google Scholar : PubMed/NCBI | |
Johnston SC, Riddle SM, Cohen RE and Hill CP: Structural basis for the specificity of ubiquitin C-terminal hydrolases. EMBO J. 18:3877–3887. 1999. View Article : Google Scholar : PubMed/NCBI | |
Fang Y and Shen X: Ubiquitin carboxyl-terminal hydrolases: Involvement in cancer progression and clinical implications. Cancer Metastasis Rev. 36:669–682. 2017. View Article : Google Scholar : PubMed/NCBI | |
McDonough M, Sangan P and Gonda DK: Characterization of novel yeast RAD6 (UBC2) ubiquitin-conjugating enzyme mutants constructed by charge-to-alanine scanning mutagenesis. J Bacteriol. 177:580–585. 1995. View Article : Google Scholar : PubMed/NCBI | |
Xu JC, Dawson VL and Dawson TM: Usp16: Key controller of stem cells in Down syndrome. EMBO J. 32:2788–2789. 2013. View Article : Google Scholar : PubMed/NCBI | |
Avanzato D, Pupo E, Ducano N, Isella C, Bertalot G, Luise C, Pece S, Bruna A, Rueda OM, Caldas C, et al: High USP6NL levels in breast cancer sustain chronic AKT phosphorylation and GLUT1 stability fueling aerobic glycolysis. Cancer Res. 78:3432–3444. 2018.PubMed/NCBI | |
Weber A, Elliott PR, Pinto-Fernandez A, Bonham S, Kessler BM, Komander D, El Oualid F and Krappmann D: A linear diubiquitin-based probe for efficient and selective detection of the deubiquitinating enzyme OTULIN. Cell Chem Biol. 24:1299–1313.e7. 2017. View Article : Google Scholar : PubMed/NCBI | |
Taneera J, Fadista J, Ahlqvist E, Atac D, Ottosson-Laakso E, Wollheim CB and Groop L: Identification of novel genes for glucose metabolism based upon expression pattern in human islets and effect on insulin secretion and glycemia. Hum Mol Genet. 24:1945–1955. 2015. View Article : Google Scholar : PubMed/NCBI | |
Coombs N, Sompallae R, Olbermann P, Gastaldello S, Goppel D, Masucci MG and Josenhans C: Helicobacter pylori affects the cellular deubiquitinase USP7 and ubiquitin-regulated components TRAF6 and the tumour suppressor p53. Int J Med Microbiol. 301:213–224. 2011. View Article : Google Scholar : PubMed/NCBI | |
Saldana M, VanderVorst K, Berg AL, Lee H and Carraway KL: Otubain 1: A non-canonical deubiquitinase with an emerging role in cancer. Endocr Relat Cancer. 26:R1–R14. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rahman R, Asombang AW and Ibdah JA: Characteristics of gastric cancer in Asia. World J Gastroenterol. 20:4483–5890. 2014. View Article : Google Scholar : PubMed/NCBI | |
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tang Z, Li C, Kang B, Gao G, Li C and Zhang Z: GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45:W98–W102. 2017. View Article : Google Scholar : PubMed/NCBI | |
Todi SV and Paulson HL: Balancing act: Deubiquitinating enzymes in the nervous system. Trends Neurosci. 34:370–382. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Fu D and Shen XZ: The potential role of ubiquitin c-terminal hydrolases in oncogenesis. Biochim Biophys Acta. 1806:1–6. 2010.PubMed/NCBI | |
Kim HJ, Kim YM, Lim S, Nam YK, Jeong J, Kim HJ and Lee KJ: Ubiquitin C-terminal hydrolase-L1 is a key regulator of tumor cell invasion and metastasis. Oncogene. 28:117–127. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dang LC, Melandri FD and Stein RL: Kinetic and mechanistic studies on the hydrolysis of ubiquitin C-terminal 7-amido-4-methylcoumarin by deubiquitinating enzymes. Biochemistry. 37:1868–1879. 1998. View Article : Google Scholar : PubMed/NCBI | |
Case A and Stein RL: Mechanistic studies of ubiquitin C-terminal hydrolase L1. Biochemistry. 45:2443–2452. 2006. View Article : Google Scholar : PubMed/NCBI | |
Arpalahti L, Laitinen A, Hagström J, Mustonen H, Kokkola A, Böckelman C, Haglund C and Holmberg CI: Positive cytoplasmic UCHL5 tumor expression in gastric cancer is linked to improved prognosis. PLoS One. 13:e01931252018. View Article : Google Scholar : PubMed/NCBI | |
Gu YY, Yang M, Zhao M, Luo Q, Yang L, Peng H, Wang J, Huang SK, Zheng ZX, Yuan XH, et al: The de-ubiquitinase UCHL1 promotes gastric cancer metastasis via the Akt and Erk1/2 pathways. Tumour Biol. 36:8379–8387. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yan S, He F, Luo R, Wu H, Huang M, Huang C, Li Y and Zhou Z: Decreased expression of BRCA1-associated protein 1 predicts unfavorable survival in gastric adenocarcinoma. Tumour Biol. 37:6125–6133. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK and Bernards R: A genomic and functional inventory of deubiquitinating enzymes. Cell. 123:773–786. 2005. View Article : Google Scholar : PubMed/NCBI | |
Das DS, Das A, Ray A, Song Y, Samur MK, Munshi NC, Chauhan D and Anderson KC: Blockade of deubiquitylating enzyme USP1 inhibits DNA repair and triggers apoptosis in multiple myeloma cells. Clin Cancer Res. 23:4280–4289. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kedersha N, Panas MD, Achorn CA, Lyons S, Tisdale S, Hickman T, Thomas M, Lieberman J, McInerney GM, Ivanov P and Anderson P: G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. J Cell Biol. 212:845–860. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kapadia B, Nanaji NM, Bhalla K, Bhandary B, Lapidus R, Beheshti A, Evens AM and Gartenhaus RB: Fatty Acid Synthase induced S6Kinase facilitates USP11-eIF4B complex formation for sustained oncogenic translation in DLBCL. Nat Commun. 9:8292018. View Article : Google Scholar : PubMed/NCBI | |
Aron R, Pellegrini P, Green EW, Maddison DC, Opoku-Nsiah K, Wong JS, Daub AC, Giorgini F and Finkbeiner S: Publisher correction: Deubiquitinase Usp12 functions noncatalytically to induce autophagy and confer neuroprotection in models of Huntington's disease. Nat Commun. 9:43332018. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Zhang M, Jing Y, Yin X, Ma P, Zhang Z, Wang X, Di W and Zhuang G: Deubiquitinase USP13 dictates MCL1 stability and sensitivity to BH3 mimetic inhibitors. Nat Commun. 9:2152018. View Article : Google Scholar : PubMed/NCBI | |
Lee BH, Lee MJ, Park S, Oh DC, Elsasser S, Chen PC, Gartner C, Dimova N, Hanna J, Gygi SP, et al: Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature. 467:179–184. 2010. View Article : Google Scholar : PubMed/NCBI | |
Eichhorn PJ, Rodon L, Gonzalez-Junca A, Dirac A, Gili M, Martinez-Saez E, Aura C, Barba I, Peg V, Prat A, et al: USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma. Nat Med. 18:429–435. 2012. View Article : Google Scholar : PubMed/NCBI | |
Adorno M, Sikandar S, Mitra SS, Kuo A, Nicolis Di Robilant B, Haro-Acosta V, Ouadah Y, Quarta M, Rodriguez J, Qian D, et al: Usp16 contributes to somatic stem-cell defects in Down's syndrome. Nature. 501:380–384. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shaw JA, Page K, Blighe K, Hava N, Guttery D, Ward B, Brown J, Ruangpratheep C, Stebbing J, Payne R, et al: Genomic analysis of circulating cell-free DNA infers breast cancer dormancy. Genome Res. 22:220–231. 2012. View Article : Google Scholar : PubMed/NCBI | |
Malakhov MP, Malakhova OA, Kim KI, Ritchie KJ and Zhang DE: UBP43 (USP18) specifically removes ISG15 from conjugated proteins. J Biol Chem. 277:9976–9981. 2002. View Article : Google Scholar : PubMed/NCBI | |
Combaret L, Adegoke OA, Bedard N, Baracos V, Attaix D and Wing SS: USP19 is a ubiquitin-specific protease regulated in rat skeletal muscle during catabolic states. Am J Physiol Endocrinol Metab. 288:E693–E700. 2005. View Article : Google Scholar : PubMed/NCBI | |
Xie L, Wei J, Qian X, Chen G, Yu L, Ding Y and Liu B: CXCR4, a potential predictive marker for docetaxel sensitivity in gastric cancer. Anticancer Res. 30:2209–2216. 2010.PubMed/NCBI | |
Fu Y, Ma G, Liu G, Li B, Li H, Hao X and Liu L: USP14 as a novel prognostic marker promotes cisplatin resistance via Akt/ERK signaling pathways in gastric cancer. Cancer Med. 7:5577–5588. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zeng Z, Wu HX, Zhan N, Huang YB, Wang ZS, Yang GF, Wang P and Fu GH: Prognostic significance of USP10 as a tumor-associated marker in gastric carcinoma. Tumour Biol. 35:3845–3853. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Zhang Y, Sui Z, Zhang Y, Liu M and Tang H: USP14 de-ubiquitinates vimentin and miR-320a modulates USP14 and vimentin to contribute to malignancy in gastric cancer cells. Oncotarget. 8:48725–48736. 2017.PubMed/NCBI | |
Renatus M, Parrado SG, D'Arcy A, Eidhoff U, Gerhartz B, Hassiepen U, Pierrat B, Riedl R, Vinzenz D, Worpenberg S and Kroemer M: Structural basis of ubiquitin recognition by the deubiquitinating protease USP2. Structure. 14:1293–1302. 2006. View Article : Google Scholar : PubMed/NCBI | |
Berthouze M, Venkataramanan V, Li Y and Shenoy SK: The deubiquitinases USP33 and USP20 coordinate beta2 adrenergic receptor recycling and resensitization. EMBO J. 28:1684–1796. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ye Y, Akutsu M, Reyes-Turcu F, Enchev RI, Wilkinson KD and Komander D: Polyubiquitin binding and cross-reactivity in the USP domain deubiquitinase USP21. EMBO Rep. 12:350–357. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang XY, Varthi M, Sykes SM, Phillips C, Warzecha C, Zhu W, Wyce A, Thorne AW, Berger SL and McMahon SB: The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression. Mol Cell. 29:102–111. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Lubin A, Chen H, Sun Z and Gong F: The deubiquitinating protein USP24 interacts with DDB2 and regulates DDB2 stability. Cell Cycle. 11:4378–4384. 2012. View Article : Google Scholar : PubMed/NCBI | |
Stouffs K, Lissens W, Tournaye H, Van Steirteghem A and Liebaers I: Possible role of USP26 in patients with severely impaired spermatogenesis. Eur J Hum Genet. 13:336–340. 2005. View Article : Google Scholar : PubMed/NCBI | |
Weber A, Heinlein M, Dengjel J, Alber C, Singh PK and Häcker G: The deubiquitinase Usp27× stabilizes the BH3-only protein Bim and enhances apoptosis. EMBO Rep. 17:724–738. 2016. View Article : Google Scholar : PubMed/NCBI | |
Popov N, Wanzel M, Madiredjo M, Zhang D, Beijersbergen R, Bernards R, Moll R, Elledge SJ and Eilers M: The ubiquitin-specific protease USP28 is required for MYC stability. Nat Cell Biol. 9:765–774. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Chung HJ, Vogt M, Jin Y, Malide D, He L, Dundr M and Levens D: JTV1 co-activates FBP to induce USP29 transcription and stabilize p53 in response to oxidative stress. EMBO J. 30:846–858. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhao LJ, Zhang T, Feng XJ, Chang J, Suo FZ, Ma JL, Liu YJ, Liu Y, Zheng YC and Liu HM: USP28 contributes to the proliferation and metastasis of gastric cancer. J Cell Biochem. Nov 28–2018.(Epub ahead of print). doi: 10.1002/jcb.28040. | |
Wang C, Yang C, Ji J, Jiang J, Shi M, Cai Q, Yu Y, Zhu Z and Zhang J: Deubiquitinating enzyme USP20 is a positive regulator of Claspin and suppresses the malignant characteristics of gastric cancer cells. Int J Oncol. Mar 8–2017.(Epub ahead of print). doi: 10.3892/ijo.2017.3904. | |
Ma Y, Fu HL, Wang Z, Huang H, Ni J, Song J, Xia Y, Jin WL and Cui DX: USP22 maintains gastric cancer stem cell stemness and promotes gastric cancer progression by stabilizing BMI1 protein. Oncotarget. 8:33329–33342. 2017.PubMed/NCBI | |
He Y, Jin YJ, Zhang YH, Meng HX, Zhao BS, Jiang Y, Zhu JW, Liang GY, Kong D and Jin XM: Ubiquitin-specific peptidase 22 overexpression may promote cancer progression and poor prognosis in human gastric carcinoma. Transl Res. 16:407–416. 2015. View Article : Google Scholar | |
Yang DD, Cui BB, Sun LY, Zheng HQ, Huang Q, Tong JX and Zhang QF: The co-expression of USP22 and BMI-1 may promote cancer progression and predict therapy failure in gastric carcinoma. Cell Biochem Biophys. 61:703–710. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nicassio F, Corrado N, Vissers JH, Areces LB, Bergink S, Marteijn JA, Geverts B, Houtsmuller AB, Vermeulen W, Di Fiore PP and Citterio E: Human USP3 is a chromatin modifier required for S phase progression and genome stability. Curr Biol. 17:1972–1977. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE, Song Q, Foreman O, Kirkpatrick DS and Sheng M: The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature. 510:370–375. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tzimas C, Michailidou G, Arsenakis M, Kieff E, Mosialos G and Hatzivassiliou EG: Human ubiquitin specific protease 31 is a deubiquitinating enzyme implicated in activation of nuclear factor-kappaB. Cell Signal. 18:83–92. 2006. View Article : Google Scholar : PubMed/NCBI | |
Akhavantabasi S, Akman HB, Sapmaz A, Keller J, Petty EM and Erson AE: USP32 is an active, membrane-bound ubiquitin protease overexpressed in breast cancers. Mamm Genome. 21:388–397. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sy SM, Jiang J, O WS, Deng Y and Huen MS: The ubiquitin specific protease USP34 promotes ubiquitin signaling at DNA double-strand breaks. Nucleic Acids Res. 41:8572–8580. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Serricchio M, Jauregui M, Shanbhag R, Stoltz T, Di Paolo CT, Kim PK and McQuibban GA: Deubiquitinating enzymes regulate PARK2-mediated mitophagy. Autophagy. 11:595–606. 2015. View Article : Google Scholar : PubMed/NCBI | |
Endo A, Matsumoto M, Inada T, Yamamoto A, Nakayama KI, Kitamura N and Komada M: Nucleolar structure and function are regulated by the deubiquitylating enzyme USP36. J Cell Sci. 122:678–686. 2009. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Summers MK, Pham V, Lill JR, Liu J, Lee G, Kirkpatrick DS, Jackson PK, Fang G and Dixit VM: Deubiquitinase USP37 is activated by CDK2 to antagonize APC(CDH1) and promote S phase entry. Mol Cell. 42:511–523. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lin M, Zhao Z, Yang Z, Meng Q, Tan P, Xie W, Qin Y, Wang RF and Cui J: USP38 Inhibits type I interferon signaling by editing TBK1 Ubiquitination through NLRP4 Signalosome. Mol Cell. 64:267–281. 2016. View Article : Google Scholar : PubMed/NCBI | |
van Leuken RJ, Luna-Vargas MP, Sixma TK, Wolthuis RM and Medema RH: Usp39 is essential for mitotic spindle checkpoint integrity and controls mRNA-levels of aurora B. Cell Cycle. 7:2710–2719. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fang CL, Lin CC, Chen HK, Hseu YC, Hung ST, Sun DP, Uen YH and Lin KY: Ubiquitin-specific protease 3 overexpression promotes gastric carcinogenesis and is predictive of poor patient prognosis. Cancer Sci. 109:3438–3449. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Pang X, Ji L, Sun Y and Ji Y: Reduced expression of deubiquitinase USP33 is associated with tumor progression and poor prognosis of gastric adenocarcinoma. Med Sci Monit. 24:3496–505. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Yu Q, Huang L and Yu P: Lentivirus-mediated inhibition of USP39 suppresses the growth of gastric cancer cells via PARP activation. Mol Med Rep. 14:301–306. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dong X, Su H, Jiang F, Li H, Shi G and Fan L: miR-133a, directly targeted USP39, suppresses cell proliferation and predicts prognosis of gastric cancer. Oncol Lett. 15:8311–3818. 2018.PubMed/NCBI | |
Zhang L, Zhou F, Drabsch Y, Gao R, Snaar-Jagalska BE, Mickanin C, Huang H, Sheppard KA, Porter JA, Lu CX and ten Dijke P: USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-β type I receptor. Nat Cell Biol. 14:717–726. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Schrodi S, Rowland C, Tacey K, Catanese J and Grupe A: Genetic evidence for ubiquitin-specific proteases USP24 and USP40 as candidate genes for late-onset Parkinson disease. Hum Mutat. 27:1017–1023. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pinilla-Vera M, Xiong Z, Zhao Y, Zhao J, Donahoe MP, Barge S, Horne WT, Kolls JK, McVerry BJ, Birukova A, et al: Full spectrum of LPS activation in alveolar macrophages of healthy volunteers by whole transcriptomic profiling. PLoS One. 11:e01593292016. View Article : Google Scholar : PubMed/NCBI | |
Hock AK, Vigneron AM, Carter S, Ludwig RL and Vousden KH: Regulation of p53 stability and function by the deubiquitinating enzyme USP42. EMBO J. 30:4921–4930. 2011. View Article : Google Scholar : PubMed/NCBI | |
He L, Liu X, Yang J, Li W, Liu S, Liu X, Yang Z, Ren J, Wang Y, Shan L, et al: Imbalance of the reciprocally inhibitory loop between the ubiquitin-specific protease USP43 and EGFR/PI3K/AKT drives breast carcinogenesis. Cell Res. 28:934–951. 2018. View Article : Google Scholar : PubMed/NCBI | |
Borrero J, Jimenez JJ, Gutiez L, Herranz C, Cintas LM and Hernandez PE: Use of the usp45 lactococcal secretion signal sequence to drive the secretion and functional expression of enterococcal bacteriocins in Lactococcus lactis. Appl Microbiol Biotechnol. 89:131–143. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schweitzer K and Naumann M: CSN-associated USP48 confers stability to nuclear NF-kappaB/RelA by trimming K48-linked Ub-chains. Biochim Biophys Acta. 1853:453–469. 2015. View Article : Google Scholar : PubMed/NCBI | |
Weinstock J, Wu J, Cao P, Kingsbury WD, McDermott JL, Kodrasov MP, McKelvey DM, Suresh Kumar KG, Goldenberg SJ, Mattern MR and Nicholson B: Selective dual inhibitors of the cancer-related deubiquitylating proteases USP7 and USP47. ACS Med Chem Lett. 3:789–792. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Yin Y, Hu Y, Zhang J, Bian Z, Song M, Hua D and Huang Z: MicroRNA-204-5p inhibits gastric cancer cell proliferation by downregulating USP47 and RAB22A. Med Oncol. 32:3312015. View Article : Google Scholar : PubMed/NCBI | |
Naghavi L, Schwalbe M, Ghanem A and Naumann M: Deubiquitinylase USP47 promotes RelA phosphorylation and survival in gastric cancer cells. Biomedicines. 6(pii): E622018. View Article : Google Scholar : PubMed/NCBI | |
Hou K, Zhu Z, Wang Y, Zhang C, Yu S, Zhu Q and Yan B: Overexpression and biological function of ubiquitin-specific protease 42 in gastric cancer. PLoS One. 11:e01529972016. View Article : Google Scholar : PubMed/NCBI | |
Nishimura S, Oki E, Ando K, Iimori M, Nakaji Y, Nakashima Y, Saeki H, Oda Y and Maehara Y: High ubiquitin-specific protease 44 expression induces DNA aneuploidy and provides independent prognostic information in gastric cancer. Cancer Med. 6:1453–1464. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dayal S, Sparks A, Jacob J, Allende-Vega N, Lane DP and Saville MK: Suppression of the deubiquitinating enzyme USP5 causes the accumulation of unanchored polyubiquitin and the activation of p53. J Biol Chem. 284:5030–5041. 2009. View Article : Google Scholar : PubMed/NCBI | |
Aressy B, Jullien D, Cazales M, Marcellin M, Bugler B, Burlet-Schiltz O and Ducommun B: A screen for deubiquitinating enzymes involved in the G2/M checkpoint identifies USP50 as a regulator of HSP90-dependent Wee1 stability. Cell Cycle. 9:3815–3822. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Zhang H, Liu J, Cheruiyot A, Lee JH, Ordog T, Lou Z, You Z and Zhang Z: USP51 deubiquitylates H2AK13,15ub and regulates DNA damage response. Genes Dev. 30:946–959. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang S, Liu L, Cao C, Song N, Wang Y, Ma S, Zhang Q, Yu N, Ding X, Yang F, et al: USP52 acts as a deubiquitinase and promotes histone chaperone ASF1A stabilization. Nat Commun. 9:12852018. View Article : Google Scholar : PubMed/NCBI | |
Kazmierczak M, Harris SL, Kazmierczak P, Shah P, Starovoytov V, Ohlemiller KK and Schwander M: Progressive hearing loss in mice carrying a mutation in Usp53. J Neurosci. 35:15582–15598. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fraile JM, Campos-Iglesias D, Rodriguez F, Espanol Y and Freije JM: The deubiquitinase USP54 is overexpressed in colorectal cancer stem cells and promotes intestinal tumorigenesis. Oncotarget. 7:74427–74434. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Wang WM, Zou LY, Li L, Feng L, Pan MZ, Lv MY, Cao Y, Wang H, Kung HF, et al: Ubiquitin specific peptidase 5 mediates Histidine-rich protein Hpn induced cell apoptosis in hepatocellular carcinoma through P14-P53 signaling. Proteomics. 172017.doi: 10.1002/pmic.201600350. PubMed/NCBI | |
Oliveira AM, Perez-Atayde AR, Inwards CY, Medeiros F, Derr V, Hsi BL, Gebhardt MC, Rosenberg AE and Fletcher JA: USP6 and CDH11 oncogenes identify the neoplastic cell in primary aneurysmal bone cysts and are absent in so-called secondary aneurysmal bone cysts. Am J Pathol. 165:1773–1780. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kang A, Kumar JB, Thomas A and Bourke AG: A spontaneously resolving breast lesion: Imaging and cytological findings of nodular fasciitis of the breast with FISH showing USP6 gene rearrangement. BMJ Case Rep. 2015(pii): bcr20152130762015. View Article : Google Scholar : PubMed/NCBI | |
Jian F, Cao Y, Bian L and Sun Q: USP8: A novel therapeutic target for Cushing's disease. Endocrine. 50:292–296. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fu X, Xie W, Song X, Wu K, Xiao L, Liu Y and Zhang L: Aberrant expression of deubiquitylating enzyme USP9X predicts poor prognosis in gastric cancer. Clin Res Hepatol Gastroenterol. 41:687–692. 2017. View Article : Google Scholar : PubMed/NCBI | |
Deng S, Zhou H, Xiong R, Lu Y, Yan D, Xing T, Dong L, Tang E and Yang H: Over-expression of genes and proteins of ubiquitin specific peptidases (USPs) and proteasome subunits (PSs) in breast cancer tissue observed by the methods of RFDD-PCR and proteomics. Breast Cancer Res Treat. 104:21–30. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xia JT, Chen LZ, Jian WH, Wang KB, Yang YZ, He WL, Chen D and Li W: MicroRNA-362 induces cell proliferation and apoptosis resistance in gastric cancer by activation of NF-B signaling. J Transl Med. 12:332014. View Article : Google Scholar : PubMed/NCBI | |
Sun B, Li L, Ma W, Wang S and Huang C: MiR-130b inhibits proliferation and induces apoptosis of gastric cancer cells via CYLD. Tumour Biol. 37:7981–9787. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bermejo JL, Kabisch M, Dunnebier T, Schnaidt S, Melchior F, Fischer HP, Harth V, Rabstein S, Pesch B, Brüning T, et al: Exploring the association between genetic variation in the SUMO isopeptidase gene USPL1 and breast cancer through integration of data from the population-based GENICA study and external genetic databases. Int J Cancer. 133:362–372. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mevissen TE, Hospenthal MK, Geurink PP, Elliott PR, Akutsu M, Arnaudo N, Ekkebus R, Kulathu Y, Wauer T, El Oualid F, et al: OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell. 154:169–184. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wiener R, Zhang X, Wang T and Wolberger C: The mechanism of OTUB1-mediated inhibition of ubiquitination. Nature. 483:618–622. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kato K, Nakajima K, Ui A, Muto-Terao Y, Ogiwara H and Nakada S: Fine-tuning of DNA damage-dependent ubiquitination by OTUB2 supports the DNA repair pathway choice. Mol Cell. 53:617–630. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang YQ, Zhang QY, Weng WW, Wu Y, Yang YS, Shen C, Chen XC, Wang L, Liu KJ, Xu MD and Sheng WQ: Upregulation of the Non-coding RNA OTUB1-isoform 2 contributes to gastric cancer cell proliferation and invasion and predicts poor gastric cancer prognosis. Int J Biol Sci. 12:545–557. 2016. View Article : Google Scholar : PubMed/NCBI | |
Carneiro AP, Reis CF, Morari EC, Maia YC, Nascimento R, Bonatto JM, de Souza MA, Goulart LR and Ward LS: A putative OTU domain-containing protein 1 deubiquitinating enzyme is differentially expressed in thyroid cancer and identifies less-aggressive tumours. Br J Cancer. 111:551–558. 2014. View Article : Google Scholar : PubMed/NCBI | |
Flierman D, van der Heden van Noort GJ, Ekkebus R, Geurink PP, Mevissen TE, Hospenthal MK, Komander D and Ovaa H: Non-hydrolyzable diubiquitin probes reveal linkage-specific reactivity of deubiquitylating enzymes mediated by S2 pockets. Cell Chem Biol. 23:472–482. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yuan L, Lv Y, Li H, Gao H, Song S, Zhang Y, Xing G, Kong X, Wang L, Li Y, et al: Deubiquitylase OTUD3 regulates PTEN stability and suppresses tumorigenesis. Nat Cell Biol. 17:1169–1181. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Majid MC, Soll JM, Brickner JR, Dango S and Mosammaparast N: Noncanonical regulation of alkylation damage resistance by the OTUD4 deubiquitinase. EMBO J. 34:1687–1703. 2015. View Article : Google Scholar : PubMed/NCBI | |
Luo J, Lu Z, Lu X, Chen L, Cao J, Zhang S, Ling Y and Zhou X: OTUD5 regulates p53 stability by deubiquitinating p53. PLoS One. 8:e776822013. View Article : Google Scholar : PubMed/NCBI | |
Kim SY, Kwon SK, Lee SY and Baek KH: Ubiquitin-specific peptidase 5 and ovarian tumor deubiquitinase 6A are differentially expressed in p53+/+ and p53−/− HCT116 cells. Int J Oncol. Mar 5–2018.(Epub ahead of print). doi: 10.3892/ijo.2018.4302. View Article : Google Scholar | |
Santiago-Sim T, Burrage LC, Ebstein F, Tokita MJ, Miller M, Bi W, Braxton AA, Rosenfeld JA, Shahrour M, Lehmann A, et al: Biallelic variants in OTUD6B cause an intellectual disability syndrome associated with seizures and dysmorphic features. Am J Hum Genet. 100:676–688. 2017. View Article : Google Scholar : PubMed/NCBI | |
Evans PC, Smith TS, Lai MJ, Williams MG, Burke DF, Heyninck K, Kreike MM, Beyaert R, Blundell TL and Kilshaw PJ: A novel type of deubiquitinating enzyme. J Biol Chem. 278:23180–23186. 2003. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Pei L, Wang L, Zhang F, Hu X and Gui Y: Snail1-dependent transcriptional repression of Cezanne2 in hepatocellular carcinoma. Oncogene. 33:2836–2845. 2014. View Article : Google Scholar : PubMed/NCBI | |
Virdee S, Ye Y, Nguyen DP, Komander D and Chin JW: Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase. Nat Chem Biol. 6:750–757. 2010. View Article : Google Scholar : PubMed/NCBI | |
Guo T, Zhang Y, Qu X, Che X, Li C, Fan Y, Wan X, Ma R, Hou K, Zhou H, et al: miR-200a enhances TRAIL-induced apoptosis in gastric cancer cells by targeting A20. Cell Biol Int. 42:506–514. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lork M, Verhelst K and Beyaert R: CYLD, A20 and OTULIN deubiquitinases in NF-B signaling and cell death: So similar, yet so different. Cell Death Differ. 24:1172–1183. 2017. View Article : Google Scholar : PubMed/NCBI | |
Weng W, Zhang Q, Xu M, Wu Y, Zhang M, Shen C, Chen X, Wang Y and Sheng W: OTUB1 promotes tumor invasion and predicts a poor prognosis in gastric adenocarcinoma. Am J Transl Res. 8:2234–2244. 2016.PubMed/NCBI | |
Wang X, Zhang L, Zhang Y, Zhao P, Qian L, Yuan Y, Liu J, Cheng Q, Xu W, Zuo Y, et al: JOSD1 negatively regulates type-I interferon antiviral activity by deubiquitinating and stabilizing SOCS1. Viral Immunol. 30:342–349. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Zheng A, Hydbring P, Ambroise G, Ouchida AT, Goiny M, Vakifahmetoglu-Norberg H and Norberg E: PHGDH defines a metabolic subtype in lung adenocarcinomas with poor prognosis. Cell Rep. 19:2289–2303. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Huang JY, Chen YN, Yuan F, Zhang H, Yan FH, Wang MJ, Wang G, Su M, Lu G, et al: Whole genome and transcriptome sequencing of matched primary and peritoneal metastatic gastric carcinoma. Sci Rep. 5:137502015. View Article : Google Scholar : PubMed/NCBI | |
Butler LR, Densham RM, Jia J, Garvin AJ, Stone HR, Shah V, Weekes D, Festy F, Beesley J and Morris JR: The proteasomal de-ubiquitinating enzyme POH1 promotes the double-strand DNA break response. EMBO J. 31:3918–3934. 2012. View Article : Google Scholar : PubMed/NCBI | |
Py BF, Kim MS, Vakifahmetoglu-Norberg H and Yuan J: Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell. 49:331–338. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sun H, Guo D, Su Y, Yu D, Wang Q, Wang T, Zhou Q, Ran X and Zou Z: Hyperplasia of pericytes is one of the main characteristics of microvascular architecture in malignant glioma. PLoS One. 9:e1142462014. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Shi L, Guo H and Yao X: MYSM-1 suppresses migration and invasion in renal carcinoma through inhibiting epithelial-mesenchymal transition. Tumour Biol. Sep 27–2015.(Epub ahead of print). | |
Xiao D, Yang S, Huang L, He H, Pan H and He J: COP9 signalosome subunit CSN5, but not CSN6, is upregulated in lung adenocarcinoma and predicts poor prognosis. J Thorac Dis. 10:1596–1606. 2018. View Article : Google Scholar : PubMed/NCBI | |
Niu Z, Lei R, Shi J, Wang D, Shou W, Wang Z, Wang Y, Wang Z and Huang W: A polymorphism rs17336700 in the PSMD7 gene is associated with ankylosing spondylitis in Chinese subjects. Ann Rheum Dis. 70:706–907. 2011. View Article : Google Scholar : PubMed/NCBI | |
McCullough J, Clague MJ and Urbe S: AMSH is an endosome-associated ubiquitin isopeptidase. J Cell Biol. 166:487–492. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhu W, Liu Y and Ling B: Quantum mechanics and molecular mechanics study of the catalytic mechanism of human AMSH-LP domain deubiquitinating enzymes. Biochemistry. 54:5225–5234. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wickramasinghe VO, Gonzalez-Porta M, Perera D, Bartolozzi AR, Sibley CR, Hallegger M, Ule J, Marioni JC and Venkitaraman AR: Regulation of constitutive and alternative mRNA splicing across the human transcriptome by PRPF8 is determined by 5′ splice site strength. Genome Biol. 16:2012015. View Article : Google Scholar : PubMed/NCBI | |
Sang MM, Du WQ, Zhang RY, Zheng JN and Pei DS: Suppression of CSN5 promotes the apoptosis of gastric cancer cells through regulating p53-related apoptotic pathways. Bioorg Med Chem Lett. 25:2897–2901. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Wang H, Zhao S, Sun P, Wen D, Liu T, Liu H, Yang Z and Ma Z: Eukaryotic translation initiation factor EIF3H potentiates gastric carcinoma cell proliferation. Tissue Cell. 53:23–29. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cheng Y, Jia C, Li G and Li H: Expression of eukaryotic initiation factor 3f is associated with prognosis in gastric carcinomas. Oncol Res Treat. 37:198–202. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tahara H, Kay MA, Yasui W and Tahara E: MicroRNAs in cancer: The 22nd hiroshima cancer Seminar/the 4th Japanese Association for RNA interference joint international symposium, 30 August 2012, grand prince hotel Hiroshima. Jpn J Clin Oncol. 43:579–582. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huang S, Liu S, Fu JJ, Tony Wang T, Yao X, Kumar A, Liu G and Fu M: Monocyte chemotactic protein-induced protein 1 and 4 form a complex but act independently in regulation of interleukin-6 mRNA degradation. J Biol Chem. 290:20782–20792. 2015. View Article : Google Scholar : PubMed/NCBI | |
Roy A and Kolattukudy PE: Monocyte chemotactic protein-induced protein (MCPIP) promotes inflammatory angiogenesis via sequential induction of oxidative stress, endoplasmic reticulum stress and autophagy. Cell Signal. 24:2123–2131. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mansour MA: Ubiquitination: Friend and foe in cancer. Int J Biochem Cell Biol. 101:80–93. 2018. View Article : Google Scholar : PubMed/NCBI | |
Suk FM, Chang CC, Lin RJ, Lin SY, Chen YT and Liang YC: MCPIP3 as a potential metastasis suppressor gene in human colorectal cancer. Int J Mol Sci. 19:E13502018. View Article : Google Scholar : PubMed/NCBI | |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI |