1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Papagiorgis PC, Zizi AE, Tseleni S,
Oikonomakis IN and Nikiteas NI: The pattern of epidermal growth
factor receptor variation with disease progression and
aggressiveness in colorectal cancer depends on tumor location.
Oncol Lett. 3:1129–1135. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bae JM, Kim JH, Cho NY, Kim TY and Kang
GH: Prognostic implication of the CpG island methylator phenotype
in colorectal cancers depends on tumour location. Br J Cancer.
109:1004–1012. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Cate JH: Human eIF3: From ‘blobology’ to
biological insight. Philos Trans R Soc Lond B Biol Sci. 372(pii):
201601762017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lee AS, Kranzusch PJ, Doudna JA and Cate
JH: eIF3d is an mRNA cap-binding protein that is required for
specialized translation initiation. Nature. 536:96–99. 2016.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Gomes-Duarte A, Lacerda R, Menezes J and
Romão L: eIF3: A factor for human health and disease. RNA Biol.
15:26–34. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Haybaeck J, O'Connor T, Spilka R, Spizzo
G, Ensinger Ch, Mikuz G, Brunhuber T, Vogetseder A, Theurl I,
Salvenmoser W, et al: Overexpression of p150, a part of the large
subunit of the eukaryotic translation initiation factor 3, in colon
cancer. Anticancer Res. 30:1047–1055. 2010.PubMed/NCBI
|
8
|
Yu X, Zheng B and Chai R:
Lentivirus-mediated knockdown of eukaryotic translation initiation
factor 3 subunit D inhibits proliferation of HCT116 colon cancer
cells. Biosci Rep. 34:e001612014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zeng L, Wan Y, Li D, Wu J, Shao M, Chen J,
Hui L, Ji H and Zhu X: The m subunit of murine translation
initiation factor EIF3Maintains the integrity of the eIF3 complex
and is required for embryonic development, homeostasis, and organ
size control. J Biol Chem. 288:30087–30093. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Valášek LS, Zeman J, Wagner S, Beznosková
P, Pavlíková Z, Mohammad MP, Hronová V, Herrmannová A, Hashem Y and
Gunišová S: Embraced by eIF3: Structural and functional insights
into the roles of eIF3 across the translation cycle. Nucleic Acids
Res. 45:10948–10968. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Goh SH, Hong SH, Hong SH, Lee BC, Ju MH,
Jeong JS, Cho YR, Kim IH and Lee YS: eIF3m expression influences
the regulation of tumorigenesis-related genes in human colon
cancer. Oncogene. 30:398–409. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Brill E, Gobble R, Angeles C,
Lagos-Quintana M, Crago A, Laxa B, Decarolis P, Zhang L, Antonescu
C, Socci ND, et al: ZIC1 overexpression is oncogenic in
liposarcoma. Cancer Res. 70:6891–6901. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Jorissen RN, Gibbs P, Christie M, Prakash
S, Lipton L, Desai J, Kerr D, Aaltonen LA, Arango D, Kruhøffer M,
et al: Metastasis-associated gene expression changes predict poor
outcomes in patients with dukes stage B and C colorectal cancer.
Clin Cancer Res. 15:7642–7651. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Skrzypczak M, Goryca K, Rubel T, Paziewska
A, Mikula M, Jarosz D, Pachlewski J, Oledzki J and Ostrowski J:
Modeling oncogenic signaling in colon tumors by multidirectional
analyses of microarray data directed for maximization of analytical
reliability. PLoS One. 5(pii): e130912010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Graudens E, Boulanger V, Mollard C,
Mariage-Samson R, Barlet X, Grémy G, Couillault C, Lajémi M,
Piatier-Tonneau D, Zaborski P, et al: Deciphering cellular states
of innate tumor drug responses. Genome Biol. 7:R192006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ki DH, Jeung HC, Park CH, Kang SH, Lee GY,
Lee WS, Kim NK, Chung HC and Rha SY: Whole genome analysis for
liver metastasis gene signatures in colorectal cancer. Int J
Cancer. 121:2005–2012. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Hong Y, Downey T, Eu KW, Koh PK and Cheah
PY: A ‘metastasis-prone’ signature for early-stage mismatch-repair
proficient sporadic colorectal cancer patients and its implications
for possible therapeutics. Clin Exp Metastasis. 27:83–90. 2010.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Calandra T and Bucala R: Macrophage
migration inhibitory factor (MIF): A glucocorticoid
counter-regulator within the immune system. Crit Rev Immunol.
37:359–370. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Bach JP, Deuster O, Balzer-Geldsetzer M,
Meyer B, Dodel R and Bacher M: The role of macrophage inhibitory
factor in tumorigenesis and central nervous system tumors. Cancer.
115:2031–2040. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Atrian S and Capdevila M:
Metallothionein-protein interactions. Biomol Concepts. 4:143–160.
2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Schuermann A, Helker CS and Herzog W:
Metallothionein 2 regulates endothelial cell migration through
transcriptional regulation of vegfc expression. Angiogenesis.
18:463–475. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Liu Z, Dong Z, Yang Z, Chen Q, Pan Y, Yang
Y, Cui P, Zhang X and Zhang JT: Role of eIF3a (eIF3 p170) in
intestinal cell differentiation and its association with early
development. Differentiation. 75:652–661. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wang Z, Chen J, Sun J, Cui Z and Wu H: RNA
interference-mediated silencing of eukaryotic translation
initiation factor 3, subunit B (EIF3B) gene expression inhibits
proliferation of colon cancer cells. World J Surg Oncol.
10:1192012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Song N, Wang Y, Gu XD, Chen ZY and Shi LB:
Effect of siRNA-mediated knockdown of eIF3c gene on survival of
colon cancer cells. J Zhejiang Univ Sci B. 14:451–459. 2013.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Li Z, Lin S, Jiang T, Wang J, Lu H, Tang
H, Teng M and Fan J: Overexpression of eIF3e is correlated with
colon tumor development and poor prognosis. Int J Clin Exp Pathol.
7:6462–6474. 2014.PubMed/NCBI
|
27
|
Qi J, Dong Z, Liu J and Zhang JT: EIF3i
promotes colon oncogenesis by regulating COX-2 protein synthesis
and β-catenin activation. Oncogene. 33:4156–4163. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Monteleone F, Taverna S, Alessandro R and
Fontana S: SWATH-MS based quantitative proteomics analysis reveals
that curcumin alters the metabolic enzyme profile of CML cells by
affecting the activity of miR-22/IPO7/HIF-1α axis. J Exp Clin
Cancer Res. 37:1702018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Sun Z, Li H, Shu XH, Shi H, Chen XY, Kong
QY, Wu ML and Liu J: Distinct sulfonation activities in
resveratrol-sensitive and resveratrol-insensitive human
glioblastoma cells. FEBS J. 279:2381–2392. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wu Y, Yuan L, Guo Y, Lu A, Zheng W, Xu H,
Yang Y, Hu P, Gu S, Wang B and Deng H: Identification of a GNE
homozygous mutation in a Han-Chinese family with GNE myopathy. J
Cell Mol Med. 22:5533–5538. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
He XW, Feng T, Yin QL, Jian YW and Liu T:
NOB1 is essential for the survival of RKO colorectal cancer cells.
World J Gastroenterol. 21:868–877. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Gatza ML, Silva GO, Parker JS, Fan C and
Perou CM: An integrated genomics approach identifies drivers of
proliferation in luminal-subtype human breast cancer. Nat Genet.
46:1051–1059. 2014. View
Article : Google Scholar : PubMed/NCBI
|
33
|
Jiang B, Fan X, Zhang D, Liu H and Fan C:
Identifying UBA2 as a proliferation and cell cycle regulator in
lung cancer A549 cells. J Cell Biochem. 120:12752–12761. 2019.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Choi R, Sohn I, Kim MJ, Woo HI, Lee JW, Ma
Y, Yi ES, Koo HH and Lee SY: Pathway genes and metabolites in
thiopurine therapy in Korean children with acute lymphoblastic
leukaemia. Br J Clin Pharmacol. 85:1585–1597. 2019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Love C, Sun Z, Jima D, Li G, Zhang J,
Miles R, Richards KL, Dunphy CH, Choi WW, Srivastava G, et al: The
genetic landscape of mutations in Burkitt lymphoma. Nat Genet.
44:1321–1325. 2012. View
Article : Google Scholar : PubMed/NCBI
|
36
|
Liu FF, Tu TT, Zhang HF, Hu F, Huang L,
Deng LF, Guo M, Wei Q and Li K: Coexpression network analysis of
platelet genes in sickle cell disease. Platelets. 30:1022–1029.
2019. View Article : Google Scholar : PubMed/NCBI
|
37
|
Katayama T, Kasho K and Kawakami H: The
DnaA cycle in Escherichia coli: Activation, function and
inactivation of the initiator protein. Front Microbiol. 8:24962017.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Geng W, Liang W, Fan Y, Ye Z and Zhang L:
Overexpression of CCDC34 in colorectal cancer and its involvement
in tumor growth, apoptosis and invasion. Mol Med Rep. 17:465–473.
2018.PubMed/NCBI
|
39
|
Zimmermann M, Murina O, Reijns MAM,
Agathanggelou A, Challis R, Tarnauskaitė Ž, Muir M, Fluteau A,
Aregger M, McEwan A, et al: CRISPR screens identify genomic
ribonucleotides as a source of PARP-trapping lesions. Nature.
559:285–289. 2018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Tapak L, Saidijam M, Sadeghifar M,
Poorolajal J and Mahjub H: Competing risks data analysis with
high-dimensional covariates: An application in bladder cancer.
Genomics Proteomics Bioinformatics. 13:169–176. 2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Wang Y, Zhang T, Kwiatkowski N, Abraham
BJ, Lee TI, Xie S, Yuzugullu H, Von T, Li H, Lin Z, et al:
CDK7-dependent transcriptional addiction in triple-negative breast
cancer. Cell. 163:174–186. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Rozanov DV, Savinov AY, Williams R, Liu K,
Golubkov VS, Krajewski S and Strongin AY: Molecular signature of
MT1-MMP: Transactivation of the downstream universal gene network
in cancer. Cancer Res. 68:4086–896. 2008. View Article : Google Scholar : PubMed/NCBI
|