1
|
Fizazi K, Tran N, Fein L, Matsubara N,
Rodriguez-Antolin A, Alekseev BY, Özgüroğlu M, Ye D, Feyerabend S,
Protheroe A, et al: Abiraterone plus Prednisone in metastatic,
castration-sensitive prostate cancer. Lancet Oncol. 20:686–700.
2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Gillessen S, Attard G, Beer TM, Beltran H,
Bossi A, Bristow R, Carver B, Castellano D, Chung BH, Clarke N, et
al: Management of patients with advanced prostate cancer: The
report of the Advanced Prostate Cancer Consensus Conference APCCC
2017. Eur Urol. 73:178–211. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Madaan S, Abel PD, Chaudhary KS, Hewitt R,
Stott MA, Stamp GW and Lalani EN: Cytoplasmic induction and
over-expression of cyclooxygenase-2 in human prostate cancer:
Implications for prevention and treatment. BJU Int. 86:736–741.
2000. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hao NB, He YF, Li XQ, Wang K and Wang RL:
The role of miRNA and lncRNA in gastric cancer. Oncotarget.
8:81572–81582. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Fang H, Xie J, Zhang M, Zhao Z, Wan Y and
Yao Y: miRNA-21 promotes proliferation and invasion of
triple-negative breast cancer cells through targeting PTEN. Am J
Transl Res. 9:953–961. 2017.PubMed/NCBI
|
6
|
Liu K, Huang J, Ni J, Song D, Ding M, Wang
J, Huang X and Li W: MALAT1 promotes osteosarcoma development by
regulation of HMGB1 via miR-142-3p and miR-129-5p. Cell Cycle.
16:578–587. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Lin VC, Huang SP, Ting HJ, Ma WL, Yu CC,
Huang CY, Yin HL, Huang TY, Lee CH, Chang TY, et al: Vitamin D
receptor-binding site variants affect prostate cancer progression.
Oncotarget. 8:74119–74128. 2017.PubMed/NCBI
|
8
|
Lu C, Shan Z, Li C and Yang L: miR-129
regulates cisplatin- resistance in human gastric cancer cells by
targeting P-gp. Biomed Pharmacother. 86:450–456. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zuo Y, Li Y, Zhou Z, Ma M and Fu K: Long
non-coding RNA MALAT1 promotes proliferation and invasion via
targeting miR-129-5p in triple-negative breast cancer. Biomed
Pharmacother. 95:922–928. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Tang PM, Zhou S, Meng XM, Wang QM, Li CJ,
Lian GY, Huang XR, Tang YJ, Guan XY, Yan BP, et al: Smad3 promotes
cancer progression by inhibiting E4BP4-mediated NK cell
development. Nat Commun. 8:146772017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Pashaei E, Pashaei E, Ahmady M, Ozen M and
Aydin N: Meta-analysis of miRNA expression profiles for prostate
cancer recurrence following radical prostatectomy. PLoS One.
12:e01795432017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lu S, Wang MS, Chen PJ, Ren Q and Bai P:
miRNA-186 inhibits prostate cancer cell proliferation and tumor
growth by targeting YY1 and CDK6. Exp Ther Med. 13:3309–3314. 2017.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Liu C, Liu R, Zhang D, Deng Q, Liu B, Chao
HP, Rycaj K, Takata Y, Lin K, Lu Y, et al: MicroRNA-141 suppresses
prostate cancer stem cells and metastasis by targeting a cohort of
pro-metastasis genes. Nat Commun. 8:142702017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Varambally S, Cao Q, Mani RS, Shankar S,
Wang X, Ateeq B, Laxman B, Cao X, Jing X, Ramnarayanan K, et al:
Genomic loss of microRNA-101 leads to overexpression of histone
methyltransferase EZH2 in cancer. Science. 322:1695–1699. 2008.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Elzein S and Goodyer CG: Regulation of
human growth hormone receptor expression by microRNAs. Mol
Endocrinol. 28:1448–1459. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Bijnsdorp IV, Hodzic J, Lagerweij T,
Westerman B, Krijgsman O, Broeke J, Verweij F, Nilsson RJ,
Rozendaal L, van Beusechem VW, et al: miR-129-3p controls
centrosome number in metastatic prostate cancer cells by repressing
CP110. Oncotarget. 7:16676–16687. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Huang S, Liao Q, Li L and Xin D: PTTG1
inhibits SMAD3 in prostate cancer cells to promote their
proliferation. Tumour Biol. 35:6265–6270. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Majumder S, Bhowal A, Basu S, Mukherjee P,
Chatterji U and Sengupta S: Deregulated E2F5/p38/SMAD3 circuitry
reinforces the pro-tumorigenic switch of TGFβ signaling in prostate
cancer. J Cell Physiol. 231:2482–2492. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yao B, Zhao J, Li Y, Li H, Hu Z, Pan P,
Zhang Y, Du E, Liu R and Xu Y: Elf5 inhibits TGF-β-driven
epithelial-mesenchymal transition in prostate cancer by repressing
SMAD3 activation. Prostate. 75:872–882. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lu S, Lee J, Revelo M, Wang X, Lu S and
Dong Z: Smad3 is overexpressed in advanced human prostate cancer
and necessary for progressive growth of prostate cancer cells in
nude mice. Clin Cancer Res. 13:5692–5702. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Virgo KS, Rumble RB and Singer EA:
Second-line hormonal therapy for men with chemotherapy-naïve
castration-resistant prostate cancer: American Society of Clinical
Oncology Provisional Clinical Opinion Summary. J Oncol Pract.
13:459–461. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Teixeira AL, Gomes M, Nogueira A, Azevedo
AS, Assis J, Dias F, Santos JI, Lobo F, Morais A, Maurício J, et
al: Improvement of a predictive model of castration-resistant
prostate cancer: Functional genetic variants in TGFβ1 signaling
pathway modulation. PLoS One. 8:e72419. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Song K, Wang H, Krebs TL, Wang B, Kelley
TJ and Danielpour D: DHT selectively reverses
Smad3-mediated/TGF-beta-induced responses through transcriptional
down-regulation of Smad3 in prostate epithelial cells. Mol
Endocrinol. 24:2019–2029. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ma L, Chen X, Li C, Cheng R, Gao Z, Meng
X, Sun C, Liang C and Liu Y: miR-129-5p and −3p co-target WWP1 to
suppress gastric cancer proliferation and migration. J Cell
Biochem. Nov 11–2018.(Epub ahead of print). doi:
10.1002/jcb.28027.
|
25
|
Fang D-Z, Wang Y-P, Liu J, Hui XB, Wang
XD, Chen X and Liu D: MicroRNA-129-3p suppresses tumor growth by
targeting E2F5 in glioblastoma. Eur Rev Med Pharmacol Sci.
22:1044–1050. 2018.PubMed/NCBI
|