1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Fiorentino FP, Tokgün E, Solé-Sánchez S,
Giampaolo S, Tokgün O, Jauset T, Kohno T, Perucho M, Soucek L and
Yokota J: Growth suppression by MYC inhibition in small cell lung
cancer cells with TP53 and RB1 inactivation. oncotarget.
7:31014–31028. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Keir ME, Butte MJ, Freeman GJ and Sharpe
AH: PD-1 and its ligands in tolerance and immunity. Annu Rev
Immunol. 26:677–704. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Yamazaki T, Akiba H, Iwai H, Matsuda H,
Aoki M, Tanno Y, Shin T, Tsuchiya H, Pardoll DM, Okumura K, et al:
Expression of programmed death 1 ligands by murine T cells and APC.
J Immunol. 169:5538–5545. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Chinai JM, Janakiram M, Chen F, Chen W,
Kaplan M and Zang X: New immunotherapies targeting the PD-1
pathway. Trends Pharmacol Sci. 36:587–595. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ,
Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, et al:
Safety and activity of anti-PD-L1 antibody in patients with
advanced cancer. N Engl J Med. 366:2455–2465. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Topalian SL, Hodi FS, Brahmer JR,
Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD,
Sosman JA, Atkins MB, et al: Safety, activity, and immune
correlates of anti-PD-1 antibody in cancer. N Engl J Med.
366:2443–2454. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Holland JJ, McLaren LC and Syverton JT:
Mammalian cell-virus relationship. III. Poliovirus production by
non-primate cells exposed to poliovirus ribonucleic acid. Proc Soc
Exp Biol Med. 100:843–845. 1959. View Article : Google Scholar : PubMed/NCBI
|
10
|
Pende D, Castriconi R, Romagnani P,
Spaggiari GM, Marcenaro S, Dondero A, Lazzeri E, Lasagni L, Martini
S, Rivera P, et al: Expression of the DNAM-1 ligands, nectin-2
(CD112) and poliovirus receptor (CD155), on dendritic cells:
Relevance for natural killer-dendritic cell interaction. Blood.
107:2030–2036. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Rikitake Y, Mandai K and Takai Y: The role
of nectins in different types of cell-cell adhesion. J Cell Sci.
125:3713–3722. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Sloan KE, Eustace BK, Stewart JK,
Zehetmeier C, Torella C, Simeone M, Roy JE, Unger C, Louis DN, Ilag
LL and Jay DG: CD155/PVR plays a key role in cell motility during
tumor cell invasion and migration. BMC Cancer. 4:732004. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kamran N, Takai Y, Miyoshi J, Biswas SK,
Wong JS and Gasser S: Toll-like receptor ligands induce expression
of the costimulatory molecule CD155 on antigen-presenting cells.
PLoS One. 8:e544062013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Abbas AR, Baldwin D, Ma Y, Ouyang W,
Gurney A, Martin F, Fong S, van Lookeren Campagne M, Godowski P,
Williams PM, et al: Immune response in silico (IRIS):
Immune-specific genes identified from a compendium of microarray
expression data. Genes Immun. 6:319–331. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li M, Xia P, Du Y, Liu S, Huang G, Chen J,
Zhang H, Hou N, Cheng X, Zhou L, et al: T-cell immunoglobulin and
ITIM domain (TIGIT) receptor/poliovirus receptor (PVR) ligand
engagement suppresses interferon-γ production of natural killer
cells via β-arrestin 2-mediated negative signaling. J Biol Chem.
289:17647–17657. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Stanietsky N and Mandelboim O: Paired NK
cell receptors controlling NK cytotoxicity. FEBS Lett.
584:4895–4900. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Johnston RJ, Comps-Agrar L, Hackney J, Yu
X, Huseni M, Yang Y, Park S, Javinal V, Chiu H, Irving B, et al:
The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T
cell effector function. Cancer Cell. 26:923–937. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Blake SJ, Stannard K, Liu J, Allen S, Yong
MC, Mittal D, Aguilera AR, Miles JJ, Lutzky VP, de Andrade LF, et
al: Suppression of metastases using a new lymphocyte checkpoint
target for cancer immunotherapy. Cancer Discov. 6:446–459. 2016.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhu Y, Paniccia A, Schulick AC, Chen W,
Koenig MR, Byers JT, Yao S, Bevers S and Edil BH: Identification of
CD112R as a novel checkpoint for human T cells. J Exp Med.
213:167–176. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Vallières E, Shepherd FA, Crowley J, Van
Houtte P, Postmus PE, Carney D, Chansky K, Shaikh Z and Goldstraw
P; International Association for the Study of Lung Cancer
International Staging Committee and Participating Institutions, :
The IASLC lung cancer staging project proposals regarding the
relevance of TNM in the pathologic staging of small cell lung
cancer in the forthcoming (Seventh) edition of the TNM
classification for lung cancer. J Thorac Oncol. 4:1049–1059. 2009.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Marx A, Chan JK, Coindre JM, Detterbeck F,
Girard N, Harris NL, Jaffe ES, Kurrer MO, Marom EM, Moreira AL, et
al: The 2015 World Health Organization classification of tumors of
the Thymus: Continuity and changes. J Thorac Oncol. 10:1383–1395.
2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Jørgensen LG, Osterlind K, Genollá J, Gomm
SA, Hernández JR, Johnson PW, Løber J, Splinter TA and Szturmowicz
M: Serum neuron-specific enolase (S-NSE) and the prognosis in
small-cell lung cancer (SCLC): A combined multivariable analysis on
data from nine centres. Br J Cancer. 74:463–467. 1996. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang X, Liu M, Zhang L and Ma K: Syndrome
of inappropriate antidiuretic hormone secretion: A poor prognosis
in small-cell lung cancer. Arch Med Res. 47:19–24. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen Y, Yu H, Wu C, Li J, Jiao S, Hu Y,
Tao H, Wu B and Li A: Prognostic value of plasma D-dimer levels in
patients with small-cell lung cancer. Biomed Pharmacother.
81:210–217.25. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kershaw MH, Westwood JA, Slaney CY and
Darcy PK: Clinical application of genetically modified T cells in
cancer therapy. Clin Transl Immunology. 3:e162014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Thomas S and Prendergast GC: Cancer
vaccines: A brief overview. Methods Mol Biol. 1403:755–761. 2016.
View Article : Google Scholar : PubMed/NCBI
|
27
|
M.J.A.T. Daniel G. Coit, William E. Carson
III, Brian Gastman, Julie R. Lange, Rene Gonzalez, Aparna Priyanath
Gupta, et al: NCCN guidelines® insights melanoma,
version 3.2016 featured updates to the NCCN guidelines. J Natl
Compr Cancer Netw. 14:142016.
|
28
|
Ettinger DS, Wood DE, Akerley W, Bazhenova
LA, Borghaei H, Camidge DR, Cheney RT, Chirieac LR, D'Amico TA,
Dilling TJ, et al: NCCN guidelines®insights: Non-small
cell lung cancer, version 4.2016 featured updates to the NCCN
guidelines. J Natl Compr Canc Netw. 14:255–264. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Schumacher TN, Kesmir C and van Buuren MM:
Biomarkers in cancer immunotherapy. Cancer Cell. 27:12–14. 2015.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Nomi T, Sho M, Akahori T, Hamada K, Kubo
A, Kanehiro H, Nakamura S, Enomoto K, Yagita H, Azuma M and
Nakajima Y: Clinical significance and therapeutic potential of the
programmed death-1 ligand/programmed death-1 pathway in human
pancreatic cancer. Clin Cancer Res. 13:2151–2157. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Nakai R, Maniwa Y, Tanaka Y, Nishio W,
Yoshimura M, Okita Y, Ohbayashi C, Satoh N, Ogita H, Takai Y and
Hayashi Y: Overexpression of Necl-5 correlates with unfavorable
prognosis in patients with lung adenocarcinoma. Cancer Sci.
101:1326–1330. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Atsumi S, Matsumine A, Toyoda H, Niimi R,
Iino T and Sudo A: Prognostic significance of CD155 mRNA expression
in soft tissue sarcomas. Oncol Lett. 5:1771–1776. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Nishiwada S, Sho M, Yasuda S, Shimada K,
Yamato I, Akahori T, Kinoshita S, Nagai M, Konishi N and Nakajima
Y: Clinical significance of CD155 expression in human pancreatic
cancer. Anticancer Res. 35:2287–2397. 2015.PubMed/NCBI
|
34
|
Qu P, Huang X, Zhou X, Lü Z, Liu F, Shi Z,
Lü L, Wu Y and Chen Y: Loss of CD155 expression predicts poor
prognosis in hepatocellular carcinoma. Histopathology. 66:706–714.
2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Bi J, Zheng X, Chen Y, Wei H, Sun R and
Tian Z: TIGIT safeguards liver regeneration through regulating
natural killer cell-hepatocyte crosstalk. Hepatology. 60:1389–1398.
2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Baury B, Masson D, McDermott BM Jr, Jarry
A, Blottière HM, Blanchardie P, Laboisse CL, Lustenberger P,
Racaniello VR and Denis MG: Identification of secreted CD155
isoforms. Biochem Biophys Res Commun. 309:175–182. 2003. View Article : Google Scholar : PubMed/NCBI
|
37
|
Koike S, Horie H, Ise I, Okitsu A, Yoshida
M, Iizuka N, Takeuchi K, Takegami T and Nomoto A: The poliovirus
receptor protein is produced both as membrane-bound and secreted
forms. EMBO J. 9:3217–3224. 1990. View Article : Google Scholar : PubMed/NCBI
|
38
|
Iguchi-Manaka A, Okumura G, Kojima H, Cho
Y, Hirochika R, Bando H, Sato T, Yoshikawa H, Hara H, Shibuya A and
Shibuya K: Increased soluble CD155 in the serum of cancer patients.
PLoS One. 11:e01529822016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Mahnke K and Enk AH: TIGIT-CD155
interactions in melanoma: A novel Co-inhibitory pathway with
potential for clinical intervention. J Invest Dermatol. 136:9–11.
2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Nagumo Y, Iguchi-Manaka A,
Yamashita-Kanemaru Y, Abe F, Bernhardt G, Shibuya A and Shibuya K:
Increased CD112 expression in methylcholanthrene-induced tumors in
CD155-deficient mice. PLoS One. 9:1124152014. View Article : Google Scholar
|
41
|
Lozano E, Dominguez-Villar M, Kuchroo V
and Hafler DA: The TIGIT/CD226 axis regulates human T cell
function. J Immunol. 188:3869–3875. 2012. View Article : Google Scholar : PubMed/NCBI
|