Tumor infiltrating lymphocytes: The regulator of melanoma evolution (Review)
- Authors:
- Mihaela Antohe
- Roxana Ioana Nedelcu
- Luciana Nichita
- Cristiana Gabriela Popp
- Mirela Cioplea
- Alice Brinzea
- Anastasia Hodorogea
- Andreea Calinescu
- Mihaela Balaban
- Daniela Adriana Ion
- Carmen Diaconu
- Coralia Bleotu
- Daniel Pirici
- Sabina Andrada Zurac
- Gabriela Turcu
-
Affiliations: Department of Pathophysiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania, Department of Pathology, Colentina Clinical Hospital, 021103 Bucharest, Romania, Department of Dermatology, Colentina Clinical Hospital, 021103 Bucharest, Romania, Department of Dermatology, Derma 360˚ Clinic, 011274 Bucharest, Romania, Department of Cellular and Molecular Pathology, ‘Stefan S. Nicolau’ Institute of Virology, 030304 Bucharest, Romania, Department of Pathology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania - Published online on: January 16, 2019 https://doi.org/10.3892/ol.2019.9940
- Pages: 4155-4161
This article is mentioned in:
Abstract
Sosman JA: Patient education: Melanoma treatment; advanced or metastatic melanoma (Beyond the Basics). Atkins MB and Vora SR (eds). https://www.uptodate.com/contents/melanoma-treatment-advanced-or-metastatic-melanoma-beyond-the-basics | |
Azimi F, Scolyer RA, Rumcheva P, Moncrieff M, Murali R, McCarthy SW, Saw RP and Thompson JF: Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. J Clin Oncol. 30:2678–2683. 2012. View Article : Google Scholar : PubMed/NCBI | |
Neagu M: The immune system: A hidden treasure for biomarker discovery in cutaneous melanoma. Adv Clin Chem. 58:89–140. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mukherji B: Immunology of melanoma. Clin Dermatol. 31:156–165. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dummer R, Hauschild A, Lindenblatt N, Pentheroudakis G and Keilholz U: Cutaneous melanoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 26:126–132. 2015. View Article : Google Scholar : PubMed/NCBI | |
Turcu G, Nedelcu RI, Ion DA, Brînzea A, Cioplea MD, Jilaveanu LB and Zurac SA: CEACAM1: Expression and role in melanocyte transformation. Disease Markers. 2016:94063192016. View Article : Google Scholar : PubMed/NCBI | |
Coit DG, Thompson JA, Algazi A, Andtbacka R, Bichakjian CK, Carson WE, Daniels GA, DiMaio D, Ernstoff M, Fields RC, et al: Melanoma, Version 2.2016, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 14:450–473. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nedelcu RI, Zurac SA, Brînzea A, Cioplea MD, Turcu G, Popescu R and Ion DA: Morphological features of melanocytic tumors with depigmented halo: review of the literature and personal results. Rom J Morphol Embryol. 56:659–663. 2015.PubMed/NCBI | |
Clemente CG, Mihm Jr MC, Bufalino R, Zurrida S, Collini P and Cascinelli N: Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer. 77:1303–1310. 1996. View Article : Google Scholar : PubMed/NCBI | |
Clark WH, Elder DE, Guerry D, Braitman LE, Trock BJ, Schultz D, Synnestvedt M and Halpern AC: Model predicting survival in stage I melanoma based on tumor progression. J Natl Cancer Inst Dec. 81:1893–1904. 1989. View Article : Google Scholar | |
Lee N, Zakka LR, Mihm MC and Schatton T: Tumour-infiltrating lymphocytes in melanoma prognosis and cancer immunotherapy. Pathology. 48:177–187. 2016. View Article : Google Scholar : PubMed/NCBI | |
Busam KJ, Antonescu CR, Marghoob AA, Nehal KS, Sachs DL, Shia J and Berwick M: Histologic classification of tumor-infiltrating lymphocytes in primary cutaneous malignant melanoma: A study of interobserver agreement. Am J Clin Pathol. 115:856–860. 2001. View Article : Google Scholar : PubMed/NCBI | |
Spatz A, Batist G and Eggermont AM: The biology behind prognostic factors of cutaneous melanoma. Curr Opin Oncol. 22:163–168. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tuthill RJ, Unger JM, Liu PY, Flaherty LE and Sondak VK: Risk assessment in localized primary cutaneous melanoma: A southwest oncology group study evaluating nine factors and a test of the Clark logistic regression prediction model. Am J Clin Pathol. 118:504–511. 2002. View Article : Google Scholar : PubMed/NCBI | |
Elder DE, Guerry D, Vanhorn M, Hurwitz S, Zehngebot L, Goldman LI, LaRossa D, Hamilton R, Bondi EE and Clark WH Jr: The role of lymph node dissection for clinical stage I malignant melanoma of intermediate thickness (1.51–3.99 mm). Cancer. 56:413–418. 1985. View Article : Google Scholar : PubMed/NCBI | |
Hussein MR, Elsers DA, Fadel SA and Omar AE: Immunohistological characterisation of tumour infiltrating lymphocytes in melanocytic skin lesions. J Clin Pathol. 59:316–324. 2006. View Article : Google Scholar : PubMed/NCBI | |
Shurin MR, Shurin G V, Lokshin A and Ferris RL: Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies? Cancer Metast Rev. 25:333–356. 2006. View Article : Google Scholar | |
Mantovani A, Allavena P, Sica A and Balkwill F: Cancer-related inflammation. Nature. 454:436–444. 2008. View Article : Google Scholar : PubMed/NCBI | |
Van Der Bruggen P, Zhang Y, Chaux P, Stroobant V, Panichelli C, Schultz ES, Chapiro J, Van Den Eynde BJ, Brasseur F and Boon T: Tumor-specific shared antigenic peptides recognized by human T-cells. Immunol Rev. 188:51–64. 2002. View Article : Google Scholar : PubMed/NCBI | |
Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, et al: Intratumor heterogeneity and branched evolution revealed by multiegion sequencing. N Engl J Med. 366:883–892. 2012. View Article : Google Scholar : PubMed/NCBI | |
Durrant L and Ramage J: Development of cancer vaccines to activate cytotoxic T lymphocytes. Expert Opin Biol Ther. 5:555–563. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ferrone S and Marincola FM: Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance. Immunol Today. 16:487–494. 1995. View Article : Google Scholar : PubMed/NCBI | |
Kageshita T, Hirai S, Ono T, Hicklin DJ and Ferrone S: Downregulation of HLA class I antigen-processing molecules in malignant melanoma. Am J Pathol. 154:745–754. 1999. View Article : Google Scholar : PubMed/NCBI | |
Al-Batran SE, Rafiyan MR, Atmaca A, Neumann A, Karbach J, Bender A, Weidmann E, Altmannsberger HM, Knuth A, et al: Intratumoral T-cell infiltrates and MHC class I expression in patients with stage IV melanoma. Cancer Res. 65:3937–3941. 2005. View Article : Google Scholar : PubMed/NCBI | |
Clancy T and Hovig E: Profiling networks of distinct immune-cells in tumors. BMC Bioinformatics. 17:1–15. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schiavoni G, Gabriele L and Mattei F: The tumor microenvironment: a pitch for multiple players. Front Oncol. 3:2013.doi: 10.3389/fonc.2013.00090. View Article : Google Scholar : PubMed/NCBI | |
Tel J, Anguille S, Waterborg CEJ, Smits EL, Figdor CG and de Vries IJM: Tumoricidal activity of human dendritic cells. Trends Immunol. 35:38–46. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ladányi A: Prognostic and predictive significance of immune cells infiltrating cutaneous melanoma. Pigment Cell Melanoma Res. 28:490–500. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vitale M, Cantoni C, Pietra G, Mingari MC and Moretta L: Effect of tumor cells and tumor microenvironment on NK-cell function. Eur J Immunol. 44:1582–1592. 2014. View Article : Google Scholar : PubMed/NCBI | |
Muenst S, Läubli H, Soysal SD, Zippelius A, Tzankov A and Hoeller S: The immune system and cancer evasion strategies: Therapeutic concepts. J Intern Med. 279:541–562. 2016. View Article : Google Scholar : PubMed/NCBI | |
Enk AH, Jonuleit H, Saloga J and Knop J: Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int J Cancer. 73:309–316. 1997. View Article : Google Scholar : PubMed/NCBI | |
Fainaru O, Almog N, Yung CW, Nakai K, Montoya-Zavala M, Abdollahi A, D'Amato R and Ingber DE: Tumor growth and angiogenesis are dependent on the presence of immature dendritic cells. FASEB J. 24:1411–1418. 2010. View Article : Google Scholar : PubMed/NCBI | |
Da Cunha A, Michelin MA and Murta EF: Pattern response of dendritic cells in the tumor microenvironment and breast cancer. World J Clin Oncol. 5:495–502. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi M, Suzuki K, Yashi M, Yuzawa M, Takayashiki N and Morita T: Tumor infiltrating dendritic cells predict treatment response to immmunotherapy in patients with metastatic renal cell carcinoma. Anticancer Res. 27:1137–1141. 2007.PubMed/NCBI | |
Simonetti O, Goteri G, Lucarini G, Rubini C, Stramazzotti D, Lo Muzio L, Biagini D and Offidani A: In melanoma changes of immature and mature dendritic cell expression correlate with tumor thickness:an immunohistochemical study. Int J Immunopathol Pharmacol. 20:325–333. 2007. View Article : Google Scholar : PubMed/NCBI | |
El Marsafy S, Bagot M, Bensussan A and Mauviel A: Dendritic cells in the skin-potential use for melanoma treatment. Pigment Cell Melanoma Res. 22:30–41. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lotze MT: Getting to the source: dendritic cells as therapeutic reagents for the treatment of patients with cancer. Ann Surg. 226:1–5. 1997. View Article : Google Scholar : PubMed/NCBI | |
Boddupalli CS, Bar N, Kadaveru K, Krauthammer M, Pornputtapong N, Mai Z, Ariyan S, Narayan D, Kluger H, Deng Y, et al: Interlesional diversity of T-cell receptors in melanoma with immune checkpoints enriched in tissue-resident memory T-cells. JCI Insight. 1:e889552016.doi: 10.1172/jci.insight.88955. View Article : Google Scholar : PubMed/NCBI | |
Pedoeem A, Azoulay-Alfaguter I, Strazza M, Silverman GJ and Mor A: Programmed death-1 pathway in cancer and autoimmunity. Clin Immunol. 153:145–152. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ochsenbein AF, Klenerman P, Karrer U, Ludewig B, Pericin M, Hengartner H and Zinkernagel RM: Immune surveillance against a solid tumor fails because of immunological ignorance. Proc Natl Acad Sci. 96:2233–2238. 1999. View Article : Google Scholar : PubMed/NCBI | |
Inman B, Frigola X, Dong H and Kwon E: Costimulation, coinhibition and cancer. Curr Cancer Drug Targets. 7:15–30. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pardoll DM: The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mapara MY and Sykes M: Tolerance and Cancer: Mechanisms of tumor evasion and strategies for breaking tolerance. J Clin Oncol. 22:1136–1151. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ancuceanu R and Neagu M: Immune based therapy for melanoma. Indian J Med Res. 143:135–144. 2016. View Article : Google Scholar : PubMed/NCBI | |
Munn DH and Mellor AL: Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest. 117:1147–1154. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ochoa AC, Zea AH, Hernandez C and Rodriguez PC: Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res. 13:721–726. 2007. View Article : Google Scholar | |
Becht E, Goc J, Germain C, Giraldo NA, Dieu-Nosjean MC, Sautès-Fridman C and Fridman WH: Shaping of an effective immune microenvironment to and by cancer cells. Cancer Immunol Immunother. 63:991–997. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rosenberg S, Packard B, Aebersold P, Solomon D, Topalian S, Toy S, Simon P, Lotze MT, Yang JC, Seipp CA, et al: Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. 319:1676–1680. 1988. View Article : Google Scholar : PubMed/NCBI | |
Cohen PJ, Lotze MT, Roberts JR, Rosenberg SA and Jaffe ES: The immunopathology of sequential tumor biopsies in patients treated with interleukin-2. Correlation of response with T-cell infiltration and HLA-DR expression. Am J Pathol. 129:208–216. 1987.PubMed/NCBI | |
Savage P, Leventhal DS and Malchow S: Shaping the repertoire of tumor-infiltrating effector and regulatory T-cells. Immunol Rev. 259:245–258. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rosenberg SA and Restifo NP: Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 348:62–68. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fridman WH, Remark R, Goc J, Giraldo NA, Becht E, Hammond SA, Damotte D, Dieu-Nosjean MC and Sautès-Fridman C: The immune microenvironment: A major player in human cancers. Int Arch Allergy Immunol. 164:13–26. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schlapbach C, Shafighi M, Kiermeir D, Hüsler R and Hunger RE: High expression of FOXP3 in primary melanoma is associated with tumour progression. Br J Dermatol. 170:103–109. 2014. View Article : Google Scholar : PubMed/NCBI | |
Giraldo NA, Becht E, Remark R, Damotte D, Sautès-Fridman C and Fridman WH: The immune contexture of primary and metastatic human tumours. Curr Opin Immunol. 27:8–15. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kiraz Y, Baran Y and Nalbant A: T-cells in tumor microenvironment. Tumor Biol. 37:39–45. 2016. View Article : Google Scholar | |
Yang ZZ and Ansell SM: The tumor microenvironment in follicular lymphoma. Clin Adv Hematol Oncol. 10:810–818. 2012.PubMed/NCBI | |
Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D and Levitsky H: The central role of CD4+ T-cells in the antitumor immune response. J Exp Med. 188:2357–2368. 1998. View Article : Google Scholar : PubMed/NCBI | |
Pereira MC, Oliveira DT and Kowalski LP: The role of eosinophils and eosinophil cationic protein in oral cancer (Review). Arch Oral Biol. 56:353–358. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fridman WH, Pagès F, Sautès-Fridman C and Galon J: The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 12:298–306. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bailey SR, Nelson MH, Himes RA, Li Z, Mehrotra S and Paulos CM: Th17 cells in cancer: the ultimate identity crisis. Front Immunol. 5:1664–3224. 2014. View Article : Google Scholar | |
Nishikawa H and Sakaguchi S: Regulatory T-cells in cancer immunotherapy. Curr Opin Immunol. 27:1–7. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jiang X and Shapiro DJ: The immune system and inflammation in breast cancer. Mol Cell Endocrinol. 382:673–682. 2014. View Article : Google Scholar : PubMed/NCBI | |
Miracco C, Mourmouras V, Biagioli M, Rubegni P, Mannucci S, Monciatti I, Cosci E, Tosi P and Luzi P: Utility of tumour-infiltrating CD25+FOXP3+ regulatory T-cell evaluation in predicting local recurrence in vertical growth phase cutaneous melanoma. Oncol Rep. 18:1115–1122. 2007.PubMed/NCBI | |
Gambichler T, Bindsteiner M, Höxtermann S, Terras S and Kreuter A: Circulating CD4+ CD25(high) CD127(low) regulatory T-cells are an independent predictor of advanced melanoma. Pigment Cell Melanoma Res. 26:280–283. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ma MW, Medicherla RC, Qian M, Vega-Saenz de Miera E, Friedman EB, Berman RS, Shapiro RL, Pavlick AC, Ott PA, Bhardwaj N, et al: Immune response in melanoma: an in-depth analysis of the primary tumor and corresponding sentinel lymph node. Mod Pathol. 25:1000–1010. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hillen F, Baeten CIM, Van De Winkel A, Creytens D, Van Der Schaft DWJ, Winnepenninckx V and Griffioen AW: Leukocyte infiltration and tumor cell plasticity are parameters of aggressiveness in primary cutaneous melanoma. Cancer Immunol Immunother. 57:97–106. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gooden MJM, De Bock GH, Leffers N, Daemen T and Nijman HW: The prognostic influence of tumour-infiltrating lymphocytes in cancer: A systematic review with meta-analysis. Br J Cancer. 105:93–103. 2011. View Article : Google Scholar : PubMed/NCBI | |
Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, Benci JL, Xu B, Dada H, Odorizzi PM, et al: Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 520:373–377. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bruno A, Ferlazzo G, Albini A and Noonan DM: A think tank of TINK/TANKs: tumor-infiltrating/tumor-associated natural killer cells in tumor progression and angiogenesis. J Natl Cancer Inst. 106:dju2002014. View Article : Google Scholar : PubMed/NCBI | |
Sungur CM and Murphy WJ: Positive and negative regulation by NK cells in cancer. Crit Rev Oncog. 19:57–66. 2014. View Article : Google Scholar : PubMed/NCBI | |
Balsamo M, Vermi W, Parodi M, Pietra G, Manzini C, Queirolo P, Lonardi S, Augugliaro R, Moretta A, Facchetti F, et al: Melanoma cells become resistant to NK-cell-mediated killing when exposed to NK-cell numbers compatible with NK-cell infiltration in the tumor. Eur J Immunol. 42:1833–1842. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ladányi A, Kiss J, Mohos A, Somlai B, Liszkay G, Gilde K, Fejös Z, Gaudi I, Dobos J and Tímár J: Prognostic impact of B-cell density in cutaneous melanoma. Cancer Immunol Immunother. 60:1729–1738. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bosisio FM, Wilmott JS, Volders N, Mercier M, Wouters J, Stas M, Blokx WA, Massi D, Thompson JF, Scolyer RA, et al: Plasma cells in primary melanoma. Prognostic significance and possible role of IgA. Mod Pathol. 29:347–358. 2016. View Article : Google Scholar : PubMed/NCBI | |
Allavena P, Sica A, Solinas G, Porta C and Mantovani A: The inflammatory micro-environment in tumor progression: The role of tumor-associated macrophages. Crit Rev Oncol/Hematol. 66:1–9. 2008. View Article : Google Scholar | |
Sica A, Schioppa T, Mantovani A and Allavena P: Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy. Eur J Cancer. 42:717–727. 2006. View Article : Google Scholar : PubMed/NCBI | |
Storr SJ, Safuan S, Mitra A, Elliott F, Walker C, Vasko MJ, Ho B, Cook M, Mohammed RA, Patel PM, et al: Objective assessment of blood and lymphatic vessel invasion and association with macrophage infiltration in cutaneous melanoma. Mod Pathol. 25:493–504. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mittal D, Gubin MM, Schreiber RD and Smyth MJ: New insights into cancer immunoediting and its three component phases - elimination, equilibrium and escape. Curr Opin Immunol. 27:16–25. 2014. View Article : Google Scholar : PubMed/NCBI | |
Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ, Smyth MJ and Schreiber RD: Adaptive immunity maintains occult cancer in an equilibrium state. Nature. 450:903–907. 2007. View Article : Google Scholar : PubMed/NCBI | |
Khong HT, Wang QJ and Rosenberg SA: Identification of multiple antigens recognized by tumor-infiltrating lymphocytes from a single patient: tumor escape by antigen loss and loss of MHC expression. J Immunother. 27:184–190. 2004. View Article : Google Scholar : PubMed/NCBI | |
Maeurer MJ, Gollin SM, Martin D, Swaney W, Bryant J, Castelli C, Robbins P, Parmiani G, Storkus WJ and Lotze MT: Tumor escape from immune recognition: lethal recurrent melanoma in a patient associated with downregulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART-1/Melan-A antigen. J Clin Invest. 98:1633–1641. 1996. View Article : Google Scholar : PubMed/NCBI | |
Wherry EJ: T-cell exhaustion. Nat Immunol. 12:492–499. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schatton T, Schütte U, Frank NY, Zhan Q, Hoerning A, Robles SC, Zhou J, Hodi FS, Spagnoli GC, Murphy GF and Frank MH: Modulation of T-cell activation by malignant melanoma initiating cells. Cancer Res. 70:697–708. 2010. View Article : Google Scholar : PubMed/NCBI | |
Solana R, Casado JG, Delgado E, DelaRosa O, Marín J, Durán E, Pawelec G and Tarazona R: Lymphocyte activation in response to melanoma: interaction of NK-associated receptors and their ligands. Cancer Immunol Immunother. 56:101–109. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jandus C, Bioley G, Speiser DE and Romero P: Selective accumulation of differentiated FOXP3+ CD4+ T-cells in metastatic tumor lesions from melanoma patients compared to peripheral blood. Cancer Immunol Immunother. 57:1795–1805. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gorelik L and Flavell RA: Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T-cells. Nat Med. 7:1118–1122. 2001. View Article : Google Scholar : PubMed/NCBI | |
Nicolaou A, Estdale SE, Tsatmali M, Herrero DP and Thody AJ: Prostaglandin production by melanocytic cells and the effect of α-melanocyte stimulating hormone. FEBS Lett. 570:223–226. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hirano F, Kaneko K, Tamura H, Dong H, Wang S, Ichikawa M, Rietz C, Flies DB, Lau JS, Zhu G, et al: Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res. 65:1089–1096. 2005.PubMed/NCBI |