1
|
Maithel SK, Gamblin TC, Kamel I,
Corona-Villalobos CP, Thomas M and Pawlik TM: Multidisciplinary
approaches to intrahepatic cholangiocarcinoma. Cancer.
119:3929–3942. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Tao R, Krishnan S, Bhosale PR, Javle MM,
Aloia TA, Shroff RT, Kaseb AO, Bishop AJ, Swanick CW, Koay EJ, et
al: Ablative radiotherapy doses lead to a substantial prolongation
of survival in patients with inoperable intrahepatic
cholangiocarcinoma: A retrospective dose response analysis. J Clin
Oncol. 34:219–226. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Chan KM, Tsai CY, Yeh CN, Yeh TS, Lee WC,
Jan YY and Chen MF: Characterization of intrahepatic
cholangiocarcinoma after curative resection: Outcome, prognostic
factor, and recurrence. BMC Gastroenterol. 18:1802018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Moeini A, Sia D, Bardeesy N, Mazzaferro V
and Llovet JM: Molecular Pathogenesis and Targeted Therapies for
Intrahepatic Cholangiocarcinoma. Clin Cancer Res. 22:291–300. 2016.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Rivera-Milla E, Stuermer CA and
Malaga-Trillo E: Ancient origin of reggie (flotillin), reggie-like,
and other lipid-raft proteins: Convergent evolution of the SPFH
domain. Cell Mol Life Sci. 63:343–357. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Planchon D, Rios Morris E, Genest M,
Comunale F, Vacher S, Bièche I, Denisov EV, Tashireva LA,
Perelmuter VM, Linder S, et al: MT1-MMP targeting to endolysosomes
is mediated by upregulation of flotillins. J Cell Sci.
131:jcs2189252018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Banning A, Babuke T, Kurrle N, Meister M,
Ruonala MO and Tikkanen R: Flotillins regulate focal adhesions by
interacting with α-actinin and by influencing the activation of
focal adhesion kinase. Cells. 7:E282018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Dong Z, Cheng F, Yang Y, Zhang F, Chen G
and Liu D: Expression and functional analysis of flotillins in
Dugesia japonica. Exp Cell Res. 374:76–84. 2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Head BP, Patel HH and Insel PA:
Interaction of membrane/lipid rafts with the cytoskeleton: Impact
on signaling and function: Membrane/lipid rafts, mediators of
cytoskeletal arrangement and cell signaling. Biochim Biophys Acta.
1838:532–545. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Stuermer CA: How reggies regulate
regeneration and axon growth. Cell Tissue Res. 349:71–77. 2012.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhao F, Zhang J, Liu YS, Li L and He YL:
Research advances on flotillins. Virol J. 8:4792011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Cao K, Xie D, Cao P, Zou Q, Lu C, Xiao S,
Zhou J and Peng X: SiRNA-mediated flotillin-2 (Flot2)
downregulation inhibits cell proliferation, migration, and invasion
in gastric carcinoma cells. Oncol Res. 21:271–279. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Berger T, Ueda T, Arpaia E, Chio II,
Shirdel EA, Jurisica I, Hamada K, You-Ten A, Haight J, Wakeham A,
et al: Flotillin-2 deficiency leads to reduced lung metastases in a
mouse breast cancer model. Oncogene. 32:4989–4994. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Li T, Cao C, Xiong Q and Liu D: FLOT2
overexpression is associated with the progression and prognosis of
human colorectal cancer. Oncol Lett. 17:2802–2808. 2019.PubMed/NCBI
|
16
|
Vega-Cabrera LA and Pardo-Lopez L:
Membrane remodeling and organization: Elements common to
prokaryotes and eukaryotes. IUBMB life. 69:55–62. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bodin S, Planchon D, Rios Morris E,
Comunale F and Gauthier-Rouviere C: Flotillins in intercellular
adhesion-from cellular physiology to human diseases. J Cell Sci.
127:5139–5147. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Mou X and Liu S: MiR-485 inhibits
metastasis and EMT of lung adenocarcinoma by targeting Flot2.
Biochem Biophys Res Commun. 477:521–526. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wei G, Xu Y, Peng T and Yan J: miR-133
involves in lung adenocarcinoma cell metastasis by targeting FLOT2.
Artif Cells Nanomed Biotechnol. 46:224–230. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Huang S, Zheng S, Huang S, Cheng H, Lin Y,
Wen Y and Lin W: Flot2 targeted by miR-449 acts as a prognostic
biomarker in glioma. Artif Cells Nanomed Biotechnol. 47:250–255.
2019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang D, Lu G, Shao Y and Xu D:
microRNA-802 inhibits epithelial-mesenchymal transition through
targeting flotillin-2 in human prostate cancer. Biosci Rep.
37:BSR201605212017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liu R, Xie H, Luo C, Chen Z, Zhou X, Xia
K, Chen X, Zhou M, Cao P, Cao K and Zhou J: Identification of FLOT2
as a novel target for microRNA-34a in melanoma. J Cancer Res Clin
Oncol. 141:993–1006. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Liu FT, Qu QG and Zhu ZM: Up-regulation of
Flot-2 protein is related to lymph node metastasis and poor
prognosis in human solid tumors. Minerva Chir. 72:146–156.
2017.PubMed/NCBI
|
24
|
Zhao L, Lin L, Pan C, Shi M, Liao Y, Bin J
and Liao W: Flotillin-2 promotes nasopharyngeal carcinoma
metastasis and is necessary for the epithelial-mesenchymal
transition induced by transforming growth factor-β. Oncotarget.
6:9781–9793. 2015.PubMed/NCBI
|
25
|
Zhu Z, Wang J, Sun Z, Sun X, Wang Z and Xu
H: Flotillin2 expression correlates with HER2 levels and poor
prognosis in gastric cancer. PLoS One. 8:e623652013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wang X, Yang Q, Guo L, Li XH, Zhao XH,
Song LB and Lin HX: Flotillin-2 is associated with breast cancer
progression and poor survival outcomes. J Transl Med. 11:1902013.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Liu Y, Lin L, Huang Z, Ji B, Mei S, Lin Y
and Shen Z: High expression of flotillin-2 is associated with poor
clinical survival in cervical carcinoma. Int J Clin Exp Pathol.
8:622–628. 2015.PubMed/NCBI
|
28
|
Deng Y, Ge P, Tian T, Dai C, Wang M, Lin
S, Liu K, Zheng Y, Xu P, Zhou L, et al: Prognostic value of
flotillins (flotillin-1 and flotillin-2) in human cancers: A
meta-analysis. Clin Chim Acta. 481:90–98. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Liu XX, Liu WD, Wang L, Zhu B, Shi X, Peng
ZX, Zhu HC, Liu XD, Zhong MZ, Xie D, et al: Roles of flotillins in
tumors. J Zhejiang Univ Sci B. 19:171–182. 2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ye DM, Ye SC, Yu SQ, Shu FF, Xu SS, Chen
QQ, Wang YL, Tang ZT and Pan C: Drug-resistance reversal in
colorectal cancer cells by destruction of flotillins, the key lipid
rafts proteins. Neoplasma. 66:576–583. 2019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Liu J, Huang W, Ren C, Wen Q, Liu W, Yang
X, Wang L, Zhu B, Zeng L, Feng X, et al: Flotillin-2 promotes
metastasis of nasopharyngeal carcinoma by activating NF-κB and
PI3K/Akt3 signaling pathways. Sci Rep. 5:116142015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Xie G, Li J, Chen J, Tang X, Wu S and Liao
C: Knockdown of flotillin-2 impairs the proliferation of breast
cancer cells through modulation of Akt/FOXO signaling. Oncol Rep.
33:2285–2290. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang CH, Zhu XD, Ma DN, Sun HC, Gao DM,
Zhang N, Qin CD, Zhang YY, Ye BG, Cai H, et al: Flot2 promotes
tumor growth and metastasis through modulating cell cycle and
inducing epithelial-mesenchymal transition of hepatocellular
carcinoma. Am J Cancer Res. 7:1068–1083. 2017.PubMed/NCBI
|
34
|
Xu YF, Liu HD, Liu ZL, Pan C, Yang XQ,
Ning SL, Zhang ZL, Guo S and Yu JM: Sprouty2 suppresses progression
and correlates to favourable prognosis of intrahepatic
cholangiocarcinoma via antagonizing FGFR2 signalling. J Cell Mol
Med. 22:5596–5606. 2018. View Article : Google Scholar : PubMed/NCBI
|
35
|
Huang C, Tian Y, Peng R, Zhang C, Wang D,
Han S, Jiao C, Wang X, Zhang H, Wang Y and Li X: Association of
downregulation of WWOX with poor prognosis in patients with
intrahepatic cholangiocarcinoma after curative resection. J
Gastroenterol Hepatol. 30:421–433. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yamaoka R, Ishii T, Kawai T, Yasuchika K,
Miyauchi Y, Kojima H, Katayama H, Ogiso S, Fukumitsu K and Uemoto
S: CD90 expression in human intrahepatic cholangiocarcinoma is
associated with lymph node metastasis and poor prognosis. J Surg
Oncol. 118:664–674. 2018. View Article : Google Scholar : PubMed/NCBI
|
37
|
Uchiyama K, Yamamoto M, Yamaue H, Ariizumi
S, Aoki T, Kokudo N, Ebata T, Nagino M, Ohtsuka M, Miyazaki M, et
al: Impact of nodal involvement on surgical outcomes of
intrahepatic cholangiocarcinoma: A multicenter analysis by the
Study Group for Hepatic Surgery of the Japanese Society of
Hepato-Biliary-Pancreatic Surgery. J Hepatobiliary Pancreat Sci.
18:443–452. 2011. View Article : Google Scholar : PubMed/NCBI
|