1
|
Hara T, Iwadate M, Tachibana K, Waguri S,
Takenoshita S and Hamada N: Metastasis of breast cancer cells to
the bone, lung, and lymph nodes promotes resistance to ionizing
radiation. Strahlenther Onkol. 193:848–855. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Deorukhkar A and Krishnan S: Targeting
inflammatory pathways for tumor radiosensitization. Biochem
Pharmacol. 80:1904–1914. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Grivennikov SI, Greten FR and Karin M:
Immunity, inflammation, and cancer. Cell. 140:883–899. 2010.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Michael C. Haffner, Chiara Berlato and
Wolfgang Doppler: Exploiting our knowledge of NF-κB signaling for
the treatment of mammary cancer. J Mammary Gland Biol Neoplasia.
11:63–73. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Yates TJ, Lopez LE, Lokeshwar SD, Ortiz N,
Kallifatidis G, Jordan A, Hoye K, Altman N and Lokeshwar VB:
Dietary supplement 4-methylumbelliferone: An effective
chemopreventive and therapeutic agent for prostate cancer. J Natl
Cancer Inst. 107:djv0852015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hiraga T, Ito S and Nakamura H: Cancer
stem-like cell marker CD44 promotes bone metastases by enhancing
tumorigenicity, cell motility, and hyaluronan production. Cancer
Res. 73:4112–4122. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Itano N, Sawai T, Yoshida M, Lenas P,
Yamada Y, Imagawa M, Shinomura T, Hamaguchi M, Yoshida Y, Ohnuki Y,
et al: Three isoforms of mammalian hyaluronan synthases have
distinct enzymatic properties. J Biol Chem. 274:25085–25092. 1999.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Itano N and Kimata K: Mammalian hyaluronan
synthases. IUBMB Life. 54:195–199. 2002. View Article : Google Scholar : PubMed/NCBI
|
9
|
Passi A, Vigetti D, Buraschi S and Iozzo
RV: Dissecting the role of hyaluronan synthases in the tumor
microenvironment. FEBS J. 286:2937–2949. 2019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Franklin O, Billing O, Öhlund D, Berglund
A, Herdenberg C, Wang W, Hellman U and Sund M: Novel prognostic
markers within the CD44-stromal ligand network in pancreatic
cancer. J Pathol Clin Res. 5:130–141. 2019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Li F, Hao P, Liu G, Wang W, Han R, Jiang Z
and Li X: Effects of 4-methylumbelliferone and high molecular
weight hyaluronic acid on the inflammation of corneal stromal cells
induced by LPS. Graefes Arch Clin Exp Ophthalmol. 255:559–566.
2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bharti R, Dey G and Mandal M: Cancer
development, chemoresistance, epithelial to mesenchymal transition
and stem cells: A snapshot of IL-6 mediated involvement. Cancer
Lett. 375:51–61. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Takeda K, Fujii N, Nitta Y, Sakihara H,
Nakayama K, Rikiishi H and Kumagai K: Murine tumor cells
metastasizing selectively in the liver: Ability to produce
hepatocyte-activating cytokines interleukin-1 and/or −6. Jpn J
Cancer Res. 82:1299–1308. 1991. View Article : Google Scholar : PubMed/NCBI
|
14
|
Reichner JS, Mulligan JA, Palla ME, Hixson
DC, Albina JE and Bland KI: Interleukin-6 production by rat
hepatocellular carcinoma cells is associated with metastatic
potential but not with tumorigenicity. Arch Surg. 131:360–365.
1996. View Article : Google Scholar : PubMed/NCBI
|
15
|
Saga R, Monzen S, Chiba M, Yoshino H,
Nakamura T and Hosokawa Y: Anti-tumor and anti-invasion effects of
a combination of 4-methylumbelliferone and ionizing radiation in
human fibrosarcoma cells. Oncol Lett. 13:410–416. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Saga R, Hasegawa K, Murata K, Chiba M and
Nakamura T: Okumura K, Tsuruga E and Hosokawa Y: Regulation of
radiosensitivity by 4-methylumbelliferone via the suppression of
interleukin-1 in fibrosarcoma cell. Oncol Lett. 17:3555–3561.
2019.PubMed/NCBI
|
17
|
Lokeshwar VB, Lopez LE, Munoz D, Chi A,
Shirodkar SP, Lokeshwar SD, Escudero DO, Dhir N and Altman N:
Antitumor activity of hyaluronic acid synthesis inhibitor
4-methylumbelliferone in prostate cancer cells. Cancer Res.
70:2613–2623. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liu YY, Lee CH, Dedaj R, Zhao H, Mrabat H,
Sheidlin A, Syrkina O, Huang PM, Garg HG, Hales CA, et al:
High-molecular-weight hyaluronan--a possible new treatment for
sepsis-induced lung injury: A preclinical study in mechanically
ventilated rats. Crit Care. 12:R1022008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Nazarenko I, Marhaba R, Reich E, Voronov
E, Vitacolonna M, Hildebrand D, Elter E, Rajasagi M, Apte RN and
Zöller M: Tumorigenicity of IL-1alpha- and IL-1beta-deficient
fibrosarcoma cells. Neoplasia. 10:549–562. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Bridgewood C, Stacey M, Alase A, Lagos D,
Graham A and Wittmann M: IL-36γ has proinflammatory effects on
human endothelial cells. Exp Dermatol. 26:402–408. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Carrier Y, Ma HL, Ramon HE, Napierata L,
Small C, O'Toole M, Young DA, Fouser LA, Nickerson-Nutter C,
Collins M, et al: Inter-regulation of Th17 cytokines and the IL-36
cytokines in vitro and in vivo: Implications in psoriasis
pathogenesis. J Invest Dermatol. 131:2428–2437. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Buhl AL and Wenzel J: Interleukin-36 in
Infectious and Inflammatory Skin Diseases. Front Immunol.
10:11622019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Nold MF, Nold-Petry CA, Zepp JA, Palmer
BE, Bufler P and Dinarello CA: IL-37 is a fundamental inhibitor of
innate immunity. Nat Immunol. 11:1014–1022. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Tete S, Tripodi D, Rosati M, Conti F,
Maccauro G, Saggini A, Cianchetti E, Caraffa A, Antinolfi P,
Toniato E, et al: IL-37 (IL-1F7) the newest anti-inflammatory
cytokine which suppresses immune responses and inflammation. Int J
Immunopathol Pharmacol. 25:31–38. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Tamari Y, Kashino G and Mori H:
Acquisition of radioresistance by IL-6 treatment is caused by
suppression of oxidative stress derived from mitochondria after
γ-irradiation. J Radiat Res (Tokyo). 58:412–420. 2017. View Article : Google Scholar
|
26
|
Chen Y, Zhang F, Tsai Y, Yang X, Yang L,
Duan S, Wang X, Keng P and Lee SO: IL-6 signaling promotes DNA
repair and prevents apoptosis in CD133+ stem-like cells of lung
cancer after radiation. Radiat Oncol. 10:2272015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Duan S, Tsai Y, Keng P and Chen Y, Lee SO
and Chen Y: IL-6 signaling contributes to cisplatin resistance in
non-small cell lung cancer via the up-regulation of anti-apoptotic
and DNA repair associated molecules. Oncotarget. 6:27651–27660.
2015. View Article : Google Scholar : PubMed/NCBI
|