1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Siegel RL, Miller KD, Fedewa SA, Ahnen DJ,
Meester RG, Barzi A and Jemal A: Colorectal cancer statistics,
2017. CA Cancer J Clin. 67:177–193. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Cancer Genome Atlas Network, .
Comprehensive molecular characterization of human colon and rectal
cancer. Nature. 487:330–337. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Mogensen MB, Rossing M, Østrup O, Larsen
PN, Heiberg Engel PJ, Jørgensen LN, Hogdall EV, Eriksen J, Ibsen P,
Jess P, et al: Genomic alterations accompanying tumour evolution in
colorectal cancer: Tracking the differences between primary tumours
and synchronous liver metastases by whole-exome sequencing. BMC
Cancer. 18:7522018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wang X, Fang H, Cheng Y, Li L, Sun X, Fu
T, Huang P, Zhang A, Feng Z, Li C, et al: The molecular landscape
of synchronous colorectal cancer reveals genetic heterogeneity.
Carcinogenesis. 39:708–718. 2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Grasso CS, Giannakis M, Wells DK, Hamada
T, Mu XJ, Quist M, Nowak JA, Nishihara R, Qian ZR, Inamura K, et
al: Genetic mechanisms of immune evasion in colorectal cancer.
Cancer Discov. 8:730–749. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wang J, Luo J, Chen Q, Wang X, He J, Zhang
W, Yin Z, Zheng F, Pan H, Li T, et al: Identification of LBX2 as a
novel causal gene of atrial septal defect. Int J Cardiol.
265:188–194. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lou Q, He J, Hu L and Yin Z: Role of lbx2
in the noncanonical Wnt signaling pathway for convergence and
extension movements and hypaxial myogenesis in zebrafish. Biochim
Biophys Acta. 1823:1024–1032. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lu FI, Sun YH, Wei CY, Thisse C and Thisse
B: Tissue-specific derepression of TCF/LEF controls the activity of
the Wnt/β-catenin pathway. Nat Commun. 5:53682014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ochi H and Westerfield M: Lbx2 regulates
formation of myofibrils. BMC Dev Biol. 9:132009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang J, Song J, Gao Z, Huo X, Zhang Y,
Wang W, Qi J and Zheng S: Analysis of gene expression profiles of
non-small cell lung cancer at different stages reveals
significantly altered biological functions and candidate genes.
Oncol Rep. 37:1736–1746. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bell A, Bell D, Weber RS and El-Naggar AK:
CpG island methylation profiling in human salivary gland adenoid
cystic carcinoma. Cancer. 117:2898–2909. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Villarese P, Lours C, Trinquand A, Le Noir
S, Belhocine M, Lhermitte L, Cieslak A, Tesio M, Petit A, LeLorch
M, et al: TCRα rearrangements identify a subgroup of
NKL-deregulated adult T-ALLs associated with favorable outcome.
Leukemia. 32:61–71. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Cerami E, Gao J, Dogrusoz U, Gross BE,
Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et
al: The cBio cancer genomics portal: An open platform for exploring
multidimensional cancer genomics data. Cancer Discov. 2:401–404.
2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Subramanian A, Tamayo P, Mootha VK,
Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub
TR, Lander ES, et al: Gene set enrichment analysis: A
knowledge-based approach for interpreting genome-wide expression
profiles. Proc Natl Acad Sci USA. 102:15545–15550. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Camp RL, Dolled-Filhart M and Rimm DL:
X-tile: a new bio-informatics tool for biomarker assessment and
outcome-based cut-point optimization. Clinical cancer research : an
official journal of the American Association for Cancer Research.
10:7252–7259. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Weiser MR: AJCC 8th Edition: Colorectal
Cancer. Ann Surg Oncol. 25:1454–1455. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Punt CJA, Koopman M and Vermeulen L: From
tumour heterogeneity to advances in precision treatment of
colorectal cancer. Nat Rev Clin Oncol. 14:235–246. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Sveen A, Kopetz S and Lothe RA:
Biomarker-guided therapy for colorectal cancer: Strength in
complexity. Nat Rev Clin Oncol. 17:11–32. 2020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sargent D, Sobrero A, Grothey A, O'Connell
MJ, Buyse M, Andre T, Zheng Y, Green E, Labianca R, O'Callaghan C,
et al: Evidence for cure by adjuvant therapy in colon cancer:
Observations based on individual patient data from 20,898 patients
on 18 randomized trials. J Clin Oncol. 27:872–877. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Konishi T, Shimada Y, Hsu M, Tufts L,
Jimenez-Rodriguez R, Cercek A, Yaeger R, Saltz L, Smith JJ, Nash
GM, et al: Association of preoperative and postoperative serum
carcinoembryonic antigen and colon cancer outcome. JAMA Oncol.
4:309–315. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yakabe T, Nakafusa Y, Sumi K, Miyoshi A,
Kitajima Y, Sato S, Noshiro H and Miyazaki K: Clinical significance
of CEA and CA19-9 in postoperative follow-up of colorectal cancer.
Ann Surg Oncol. 17:2349–2356. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Fletcher RH: Carcinoembryonic antigen. Ann
Intern Med. 104:66–73. 1986. View Article : Google Scholar : PubMed/NCBI
|
24
|
Das PM and Singal R: DNA methylation and
cancer. J Clin Oncol. 22:4632–4642. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bartel DP: MicroRNAs: Target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lin S and Gregory RI: MicroRNA biogenesis
pathways in cancer. Nat Rev Cancer. 15:321–333. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ding N, Sun X, Wang T, Huang L, Wen J and
Zhou Y: miR 378a 3p exerts tumor suppressive function on the
tumorigenesis of esophageal squamous cell carcinoma by targeting
Rab10. Int J Mol Med. 42:381–391. 2018.PubMed/NCBI
|
28
|
Li H, Dai S, Zhen T, Shi H, Zhang F, Yang
Y, Kang L, Liang Y and Han A: Clinical and biological significance
of miR-378a-3p and miR-378a-5p in colorectal cancer. Eur J Cancer.
50:1207–1221. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Valentino A, Calarco A, Di Salle A,
Finicelli M, Crispi S, Calogero RA, Riccardo F, Sciarra A,
Gentilucci A, Galderisi U, et al: Deregulation of MicroRNAs
mediated control of carnitine cycle in prostate cancer: Molecular
basis and pathophysiological consequences. Oncogene. 36:6030–6040.
2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhang G-J, Zhou H, Xiao H-X, Li Y and Zhou
T: MiR-378 is an independent prognostic factor and inhibits cell
growth and invasion in colorectal cancer. BMC Cancer. 14:1092014.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Winder T and Lenz H-J: Vascular
endothelial growth factor and epidermal growth factor signaling
pathways as therapeutic targets for colorectal cancer.
Gastroenterology. 138:2163–2176. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Yang LC, Lai CY, Hsieh CC and Lin WC:
Natural killer cell-mediated anticancer effects of an
arabinogalactan derived from rice hull in CT26 colon cancer-bearing
mice. Int J Biol Macromol. 124:368–376. 2019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Paschos KA, Canovas D and Bird NC: The
role of cell adhesion molecules in the progression of colorectal
cancer and the development of liver metastasis. Cell Signal.
21:665–674. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Moradi-Marjaneh R, Hassanian SM, Fiuji H,
Soleimanpour S, Ferns GA, Avan A and Khazaei M: Toll like receptor
signaling pathway as a potential therapeutic target in colorectal
cancer. J Cell Physiol. 233:5613–5622. 2018. View Article : Google Scholar : PubMed/NCBI
|