1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Mathieu KB, Bedi DG, Thrower SL, Qayyum A
and Bast RC Jr: Screening for ovarian cancer: Imaging challenges
and opportunities for improvement. Ultrasound Obstet Gynecol.
51:293–303. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Marth C, Reimer D and Zeimet AG:
Front-line therapy of advanced epithelial ovarian cancer: standard
treatment. Annals of oncology. Ann Oncol. 28 (Suppl
8):viii36–viii39. 2017. View Article : Google Scholar
|
4
|
Falzone L, Salomone S and Libra M:
Evolution of cancer pharmacological treatments at the turn of the
third millennium. Front Pharmacol. 9:13002018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lowry KP and Lee SI: Imaging and screening
of ovarian cancer. Radiol Clin North Am. 55:1251–1259. 2017.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Lew D, Sundaram V, Barrows BD, Lo SK and
Gaddam S: Resolution of diffuse intrahepatic biliary strictures
after chemotherapy for metastatic ovarian cancer. ACG Case Rep J.
4:e772017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kuehn BM: The hunt continues for early
ovarian cancer clues. JAMA. 318:14–16. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Fang RH and Ji XB: Advances in the
research of the relationship between miRNA-29c and cancer. Lin
Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 32:312–317. 2018.(In
Chinese). PubMed/NCBI
|
9
|
Gilot D and Galibert MD: miRNA
displacement as a promising approach for cancer therapy. Mol Cell
Oncol. 5:e14064322017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Falzone L, Lupo G, La Rosa GRM, Crimi S,
Anfuso CD, Salemi R, Rapisarda E, Libra M and Candido S:
Identification of novel MicroRNAs and their diagnostic and
prognostic significance in oral cancer. Cancers (Basel).
11:6102019. View Article : Google Scholar
|
11
|
Markou A, Zavridou M and Lianidou ES:
miRNA-21 as a novel therapeutic target in lung cancer. Lung Cancer
(Auckl). 7:19–27. 2016.PubMed/NCBI
|
12
|
Zheng R, Liu Y, Zhang X, Zhao P and Deng
Q: miRNA-200c enhances radiosensitivity of esophageal cancer by
cell cycle arrest and targeting P21. Biomed Pharmacother.
90:517–523. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Candido S, Lupo G, Pennisi M, Basile MS,
Anfuso CD, Petralia MC, Gattuso G, Vivarelli S, Spandidos DA, Libra
M, et al: The analysis of miRNA expression profiling datasets
reveals inverse microRNA patterns in glioblastoma and Alzheimer's
disease. Oncol Rep. 42:911–922. 2019.PubMed/NCBI
|
14
|
Hafsi S, Candido S, Maestro R, Falzone L,
Soua Z, Bonavida B, Spandidos DA and Libra M: Correlation between
the overexpression of Yin Yang 1 and the expression levels of
miRNAs in Burkitt's lymphoma: A computational study. Oncol Lett.
11:1021–1025. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Falzone L, Candido S, Salemi R, Basile MS,
Scalisi A, McCubrey JA, Torino F, Signorelli SS, Montella M and
Libra M: Computational identification of microRNAs associated to
both epithelial to mesenchymal transition and NGAL/MMP-9 pathways
in bladder cancer. Oncotarget. 7:72758–72766. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yan L, Yao J and Qiu J: miRNA-495
suppresses proliferation and migration of colorectal cancer cells
by targeting FAM83D. Biomed Pharmacother. 96:974–981. 2017.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Qi R, Wang DT, Xing LF and Wu ZJ: miRNA-21
promotes gastric cancer growth by adjusting prostaglandin
E2. Eur Rev Med Pharmacol Sci. 22:1929–1936.
2018.PubMed/NCBI
|
18
|
Cheng Y, Xiang G, Meng Y and Dong R:
MiRNA-183-5p promotes cell proliferation and inhibits apoptosis in
human breast cancer by targeting the PDCD4. Reprod Biol.
16:225–233. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Jia Z, Zhang Y, Xu Q, Guo W and Guo A:
miR-126 suppresses epithelial-to-mesenchymal transition and
metastasis by targeting PI3K/AKT/Snail signaling of lung cancer
cells. Oncol Lett. 15:7369–7375. 2018.PubMed/NCBI
|
20
|
Zhao C, Li Y, Zhang M, Yang Y and Chang L:
miR-126 inhibits cell proliferation and induces cell apoptosis of
hepatocellular carcinoma cells partially by targeting Sox2. Hum
Cell. 28:91–99. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhang Y, Wang X, Xu B, Wang B, Wang Z,
Liang Y, Zhou J, Hu J and Jiang B: Epigenetic silencing of miR-126
contributes to tumor invasion and angiogenesis in colorectal
cancer. Oncol Rep. 30:1976–1984. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Aceto N, Toner M, Maheswaran S and Haber
DA: En route to metastasis: Circulating tumor cell clusters and
epithelial-to-mesenchymal transition. Trends Cancer. 1:44–52. 2015.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Boreddy SR and Srivastava SK: Deguelin
suppresses pancreatic tumor growth and metastasis by inhibiting
epithelial-to-mesenchymal transition in an orthotopic model.
Oncogene. 32:3980–3991. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Nichol D and Stuhlmann H: EGFL7: A unique
angiogenic signaling factor in vascular development and disease.
Blood. 119:1345–1352. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Pinte S and Soncin F: Egfl7 promotes tumor
escape from immunity. OncoImmunology. 1:375–376. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Luo W, Shao C, Li N, Zhang F, Guo S, Duan
Z, Zheng Q and He H: Expression of epidermal growth factor-like
domain 7 correlates with clinicopathological features of
osteosarcoma. Am J Transl Res. 7:1236–1245. 2015.PubMed/NCBI
|
27
|
Philippin-Lauridant G, Baranzelli MC,
Samson C, Fournier C, Pinte S, Mattot V, Bonneterre J and Soncin F:
Expression of Egfl7 correlates with low-grade invasive lesions in
human breast cancer. Int J Oncol. 42:1367–1375. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Li Z, Ni CF, Zhou J, Shen XC, Yin Y, Du P
and Yang C: Expression of epidermal growth factor-like domain 7 is
increased by transcatheter arterial embolization of liver tumors.
Asian Pac J Cancer Prev. 16:1191–1196. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Shen X, Han Y, Xue X, Li W, Guo X, Li P,
Wang Y, Li D, Zhou J and Zhi Q: Epidermal growth factor-like domain
7 promotes cell invasion and angiogenesis in pancreatic carcinoma.
Biomed Pharmacother. 77:167–175. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang XX, Yao XB, Qiang ZS and Zhu HL:
Attenuation of EGFL7 inhibits human laryngocarcinoma cells growth
and invasion. Int J Clin Exp Med. 8:3141–3155. 2015.PubMed/NCBI
|
31
|
Deng QJ, Xie LQ and Li H: Overexpressed
MALAT1 promotes invasion and metastasis of gastric cancer cells via
increasing EGFL7 expression. Life Sci. 157:38–44. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Oh J, Park SH, Lee TS, Oh HK, Choi JH and
Choi YS: High expression of epidermal growth factor-like domain 7
is correlated with poor differentiation and poor prognosis in
patients with epithelial ovarian cancer. J Gynecol Oncol.
25:334–341. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Liakouli V, Cipriani P, Di Benedetto P,
Panzera N, Ruscitti P, Pantano I, Berardicurti O, Carubbi F,
Esteves F, Mavria G, et al: Epidermal growth factor like-domain 7
and miR-126 are abnormally expressed in diffuse systemic sclerosis
fibroblasts. Sci Rep. 9:45892019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Landen CN Jr, Birrer MJ and Sood AK: Early
events in the pathogenesis of epithelial ovarian cancer. J Clin
Oncol. 26:995–1005. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Fu Q, Chen Z, Gong X, Cai Y, Chen Y, Ma X,
Zhu R and Jin J: β-Catenin expression is regulated by an
IRES-dependent mechanism and stimulated by paclitaxel in human
ovarian cancer cells. Biochem Biophys Res Commun. 461:21–27. 2015.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Polo A, Crispo A, Cerino P, Falzone L,
Candido S, Giudice A, De Petro G, Ciliberto G, Montella M, Budillon
A, et al: Environment and bladder cancer: Molecular analysis by
interaction networks. Oncotarget. 8:65240–65252. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Falzone L, Scola L, Zanghì A, Biondi A, Di
Cataldo A, Libra M and Candido S: Integrated analysis of colorectal
cancer microRNA datasets: Identification of microRNAs associated
with tumor development. Aging (Albany NY). 10:1000–1014. 2018.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Falzone L, Romano GL, Salemi R, Bucolo C,
Tomasello B, Lupo G, Anfuso CD, Spandidos DA, Libra M and Candido
S: Prognostic significance of deregulated microRNAs in uveal
melanomas. Mol Med Rep. 19:2599–2610. 2019.PubMed/NCBI
|
39
|
Zheng H, Zhang L, Zhao Y, Yang D, Song F,
Wen Y, Hao Q, Hu Z, Zhang W and Chen K: Plasma miRNAs as diagnostic
and prognostic biomarkers for ovarian cancer. PLoS One.
8:e778532013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Lv T, Song K, Zhang L, Li W, Chen Y, Diao
Y, Yao Q and Liu P: miRNA-34a decreases ovarian cancer cell
proliferation and chemoresistance by targeting HDAC1. Biochem Cell
Biol. 96:663–671. 2018. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zheng HB, Zheng XG and Liu BP: miRNA-101
inhibits ovarian cancer cells proliferation and invasion by
down-regulating expression of SOCS-2. Int J Clin Exp Med.
8:20263–20270. 2015.PubMed/NCBI
|
42
|
Li J, Li Q, Huang H, Li Y, Li L, Hou W and
You Z: Overexpression of miRNA-221 promotes cell proliferation by
targeting the apoptotic protease activating factor-1 and indicates
a poor prognosis in ovarian cancer. Int J Oncol. 50:1087–1096.
2017. View Article : Google Scholar
|
43
|
Huang W, Lin J and Zhang H: miR-126: A
novel regulator in colon cancer. Biomed Rep. 4:131–134. 2016.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Jing BQ, Ou Y, Zhao L, Xie Q and Zhang YX:
Experimental study on the prevention of liver cancer angiogenesis
via miR-126. Eur Rev Med Pharmacol Sci. 21:5096–5100.
2017.PubMed/NCBI
|
45
|
Feng R, Beeharry MK, Lu S, Sah BK, Yuan F,
Yan M, Liu B, Li C and Zhu Z: Down-regulated serum miR-126 is
associated with aggressive progression and poor prognosis of
gastric cancer. Cancer Biomark. 22:119–126. 2018. View Article : Google Scholar : PubMed/NCBI
|
46
|
Li Y, Li Y, Ge P and Ma C: MiR-126
regulates the ERK pathway via targeting KRAS to inhibit the glioma
cell proliferation and invasion. Mol Neurobiol. 54:137–145. 2017.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Wen Q, Zhao J, Bai L, Wang T, Zhang H and
Ma Q: miR-126 inhibits papillary thyroid carcinoma growth by
targeting LRP6. Oncol Rep. 34:2202–2210. 2015. View Article : Google Scholar : PubMed/NCBI
|
48
|
Luo J, Zhu C, Wang H, Yu L and Zhou J:
MicroRNA-126 affects ovarian cancer cell differentiation and
invasion by modulating expression of vascular endothelial growth
factor. Oncol Lett. 15:5803–5808. 2018.PubMed/NCBI
|
49
|
Fan C, Yang LY, Wu F, Tao YM, Liu LS,
Zhang JF, He YN, Tang LL, Chen GD and Guo L: The expression of
Egfl7 in human normal tissues and epithelial tumors. Int J Biol
Markers. 28:71–83. 2013. View Article : Google Scholar : PubMed/NCBI
|