Function and regulation of F‑box/WD repeat‑containing protein 7 (Review)
- Authors:
- Zheng Zhang
- Qiangsheng Hu
- Wenyan Xu
- Wensheng Liu
- Mengqi Liu
- Qiqing Sun
- Zeng Ye
- Guixiong Fan
- Yi Qin
- Xiaowu Xu
- Xianjun Yu
- Shunrong Ji
-
Affiliations: Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China - Published online on: June 11, 2020 https://doi.org/10.3892/ol.2020.11728
- Pages: 1526-1534
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Hershko A and Ciechanover A: The ubiquitin system. Annu Rev Biochem. 67:425–479. 1998. View Article : Google Scholar : PubMed/NCBI | |
Schulman BA and Harper JW: Ubiquitin-like protein activation by E1 enzymes: The apex for downstream signalling pathways. Nat Rev Mol Cell Biol. 10:319–331. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wenzel DM, Stoll KE and Klevit RE: E2s: Structurally economical and functionally replete. Biochem J. 433:31–42. 2011. View Article : Google Scholar : PubMed/NCBI | |
Deng L, Meng T, Chen L, Wei W and Wang P: The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 5:112020. View Article : Google Scholar : PubMed/NCBI | |
Zheng N and Shabek N: Ubiquitin ligases: Structure, function, and regulation. Annu Rev Biochem. 86:129–157. 2017. View Article : Google Scholar : PubMed/NCBI | |
Deshaies RJ and Joazeiro CA: RING domain E3 ubiquitin ligases. Annu Rev Biochem. 78:399–434. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zimmerman ES, Schulman BA and Zheng N: Structural assembly of cullin-RING ubiquitin ligase complexes. Curr Opin Struct Biol. 20:714–721. 2010. View Article : Google Scholar : PubMed/NCBI | |
Diaz VM and de Herreros AG: F-box proteins: Keeping the epithelial-to-mesenchymal transition (EMT) in check. Semin Cancer Biol. 36:71–79. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zheng N, Zhou Q, Wang Z and Wei W: Recent advances in SCF ubiquitin ligase complex: Clinical implications. Biochim Biophys Acta. 1866:12–22. 2016.PubMed/NCBI | |
Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW and Elledge SJ: SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell. 86:263–274. 1996. View Article : Google Scholar : PubMed/NCBI | |
Pei XH, Bai F, Li Z, Smith MD, Whitewolf G, Jin R and Xiong Y: Cytoplasmic CUL9/PARC ubiquitin ligase is a tumor suppressor and promotes p53-dependent apoptosis. Cancer Res. 71:2969–2977. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nguyen HC, Wang W and Xiong Y: Cullin-RING E3 ubiquitin ligases: Bridges to destruction. Subcell Biochem. 83:323–347. 2017. View Article : Google Scholar : PubMed/NCBI | |
Harper JW and Tan MK: Understanding cullin-RING E3 biology through proteomics-based substrate identification. Mol Cell Proteomics. 11:1541–1550. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nakagawa T, Nakayama K and Nakayama KI: Knockout mouse models provide insight into the biological functions of CRL1 components. Adv Exp Med Biol. 1217:147–171. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gupta-Rossi N, Le Bail O, Gonen H, Brou C, Logeat F, Six E, Ciechanover A and Israel A: Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor. J Biol Chem. 276:34371–34378. 2001. View Article : Google Scholar : PubMed/NCBI | |
Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M and Harper JW: Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev. 18:2573–2580. 2004. View Article : Google Scholar : PubMed/NCBI | |
Matsumoto A, Onoyama I and Nakayama KI: Expression of mouse Fbxw7 isoforms is regulated in a cell cycle- or p53-dependent manner. Biochem Biophys Res Commun. 350:114–119. 2006. View Article : Google Scholar : PubMed/NCBI | |
Welcker M, Orian A, Grim JE, Eisenman RN and Clurman BE: A nucleolar isoform of the Fbw7 ubiquitin ligase regulates c-Myc and cell size. Curr Biol. 14:1852–1857. 2004. View Article : Google Scholar : PubMed/NCBI | |
Grim JE, Gustafson MP, Hirata RK, Hagar AC, Swanger J, Welcker M, Hwang HC, Ericsson J, Russell DW and Clurman BE: Isoform- and cell cycle-dependent substrate degradation by the Fbw7 ubiquitin ligase. J Cell Biol. 181:913–920. 2008. View Article : Google Scholar : PubMed/NCBI | |
Welcker M, Larimore EA, Frappier L and Clurman BE: Nucleolar targeting of the fbw7 ubiquitin ligase by a pseudosubstrate and glycogen synthase kinase 3. Mol Cell Biol. 31:1214–1224. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yumimoto K and Nakayama KI: Recent insight into the role of FBXW7 as a tumor suppressor. Semin Cancer Biol. Feb 27–2020.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Inuzuka H, Shaik S, Onoyama I, Gao D, Tseng A, Maser RS, Zhai B, Wan L, Gutierrez A, Lau AW, et al: SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature. 471:104–109. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wei W, Jin J, Schlisio S, Harper JW and Kaelin WG Jr: The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell. 8:25–33. 2005. View Article : Google Scholar : PubMed/NCBI | |
Welcker M, Singer J, Loeb KR, Grim J, Bloecher A, Gurien-West M, Clurman BE and Roberts JM: Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. Mol Cell. 12:381–392. 2003. View Article : Google Scholar : PubMed/NCBI | |
Moberg KH, Bell DW, Wahrer DC, Haber DA and Hariharan IK: Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature. 413:311–316. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H, Ishida N, Okumura F, Nakayama K and Nakayama KI: Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 23:2116–2125. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mao JH, Kim IJ, Wu D, Climent J, Kang HC, DelRosario R and Balmain A: FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression. Science. 321:1499–1502. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rajagopalan H and Lengauer C: hCDC4 and genetic instability in cancer. Cell Cycle. 3:693–694. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rajagopalan H, Jallepalli PV, Rago C, Velculescu VE, Kinzler KW, Vogelstein B and Lengauer C: Inactivation of hCDC4 can cause chromosomal instability. Nature. 428:77–81. 2004. View Article : Google Scholar : PubMed/NCBI | |
Maser RS, Choudhury B, Campbell PJ, Feng B, Wong KK, Protopopov A, O'Neil J, Gutierrez A, Ivanova E, Perna I, et al: Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature. 447:966–971. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wertz IE, Kusam S, Lam C, Okamoto T, Sandoval W, Anderson DJ, Helgason E, Ernst JA, Eby M, Liu J, et al: Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature. 471:110–114. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tetzlaff MT, Yu W, Li M, Zhang P, Finegold M, Mahon K, Harper JW, Schwartz RJ and Elledge SJ: Defective cardiovascular development and elevated cyclin E and Notch proteins in mice lacking the Fbw7 F-box protein. Proc Natl Acad Sci USA. 101:3338–3345. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Inuzuka H, Fukushima H, Wan L, Gao D, Shaik S, Sarkar FH and Wei W: Emerging roles of the FBW7 tumour suppressor in stem cell differentiation. EMBO Rep. 13:36–43. 2011. View Article : Google Scholar : PubMed/NCBI | |
Balamurugan K, Sharan S, Klarmann KD, Zhang Y, Coppola V, Summers GH, Roger T, Morrison DK, Keller JR and Sterneck E: FBXW7α attenuates inflammatory signalling by downregulating C/EBP δ and its target gene Tlr4. Nat Commun. 4:16622013. View Article : Google Scholar : PubMed/NCBI | |
Kourtis N, Moubarak RS, Aranda-Orgilles B, Lui K, Aydin IT, Trimarchi T, Darvishian F, Salvaggio C, Zhong J, Bhatt K, et al: FBXW7 modulates cellular stress response and metastatic potential through HSF1 post-translational modification. Nat Cell Biol. 17:322–332. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yumimoto K, Akiyoshi S, Ueo H, Sagara Y, Onoyama I, Ueo H, Ohno S, Mori M, Mimori K and Nakayama KI: F-box protein FBXW7 inhibits cancer metastasis in a non-cell-autonomous manner. J Clin Invest. 125:621–635. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rocher-Ros V, Marco S, Mao JH, Gines S, Metzger D, Chambon P, Balmain A and Saura CA: Presenilin modulates EGFR signaling and cell transformation by regulating the ubiquitin ligase Fbw7. Oncogene. 29:2950–2961. 2010. View Article : Google Scholar : PubMed/NCBI | |
Grinkevich VV, Nikulenkov F, Shi Y, Enge M, Bao W, Maljukova A, Gluch A, Kel A, Sangfelt O and Selivanova G: Ablation of key oncogenic pathways by RITA-reactivated p53 is required for efficient apoptosis. Cancer Cell. 31:724–726. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mansour MR, Sanda T, Lawton LN, Li X, Kreslavsky T, Novina CD, Brand M, Gutierrez A, Kelliher MA, Jamieson CH, et al: The TAL1 complex targets the FBXW7 tumor suppressor by activating miR-223 in human T cell acute lymphoblastic leukemia. J Exp Med. 210:1545–1557. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kumar V, Palermo R, Talora C, Campese AF, Checquolo S, Bellavia D, Tottone L, Testa G, Miele E, Indraccolo S, et al: Notch and NF-kB signaling pathways regulate miR-223/FBXW7 axis in T-cell acute lymphoblastic leukemia. Leukemia. 28:2324–2335. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lerner M, Lundgren J, Akhoondi S, Jahn A, Ng HF, Akbari Moqadam F, Oude Vrielink JA, Agami R, Den Boer ML, Grander D and Sangfelt O: MiRNA-27a controls FBW7/hCDC4-dependent cyclin E degradation and cell cycle progression. Cell Cycle. 10:2172–2183. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Li DC, Li ZF, Liu CX, Xiao YM, Zhang B, Li XD, Zhao J, Chen LP, Xing XM, et al: Upregulation of miR-27a contributes to the malignant transformation of human bronchial epithelial cells induced by SV40 small T antigen. Oncogene. 30:3875–3886. 2011. View Article : Google Scholar : PubMed/NCBI | |
Spruck C: MiR-27a regulation of SCF(Fbw7) in cell division control and cancer. Cell Cycle. 10:3232–3233. 2011. View Article : Google Scholar : PubMed/NCBI | |
Olive V, Sabio E, Bennett MJ, De Jong CS, Biton A, McGann JC, Greaney SK, Sodir NM, Zhou AY, Balakrishnan A, et al: A component of the mir-17-92 polycistronic oncomir promotes oncogene-dependent apoptosis. Elife. 2:e008222013. View Article : Google Scholar : PubMed/NCBI | |
Zhou C, Shen L, Mao L, Wang B, Li Y and Yu H: MiR-92a is upregulated in cervical cancer and promotes cell proliferation and invasion by targeting FBXW7. Biochem Biophys Res Commun. 458:63–69. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Cao L, Fan P, Mei Y and Wu M: LncRNA-MIF, a c-Myc-activated long non-coding RNA, suppresses glycolysis by promoting Fbxw7-mediated c-Myc degradation. EMBO Rep. 17:1204–1220. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Ma J, Xu F and Li L: TINCR suppresses proliferation and invasion through regulating miR-544a/FBXW7 axis in lung cancer. Biomed Pharmacother. 99:9–17. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Liu Z, Yao B, Li Q, Wang L, Wang C, Dou C, Xu M, Liu Q and Tu K: Long non-coding RNA CASC2 suppresses epithelial-mesenchymal transition of hepatocellular carcinoma cells through CASC2/miR-367/FBXW7 axis. Mol Cancer. 16:1232017. View Article : Google Scholar : PubMed/NCBI | |
Li L, Sarver AL, Khatri R, Hajeri PB, Kamenev I, French AJ, Thibodeau SN, Steer CJ and Subramanian S: Sequential expression of miR-182 and miR-503 cooperatively targets FBXW7, contributing to the malignant transformation of colon adenoma to adenocarcinoma. J Pathol. 234:488–501. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tang B, Lei B, Qi G, Liang X, Tang F, Yuan S, Wang Z, Yu S and He S: MicroRNA-155-3p promotes hepatocellular carcinoma formation by suppressing FBXW7 expression. J Exp Clin Canc Res. 35:932016. View Article : Google Scholar | |
Xia W, Zhou J, Luo H, Liu Y, Peng C, Zheng W and Ma W: MicroRNA-32 promotes cell proliferation, migration and suppresses apoptosis in breast cancer cells by targeting FBXW7. Cancer Cell Int. 17:142017. View Article : Google Scholar : PubMed/NCBI | |
Xu W, Taranets L and Popov N: Regulating Fbw7 on the road to cancer. Semin Cancer Biol. 36:62–70. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mo JS, Ann EJ, Yoon JH, Jung J, Choi YH, Kim HY, Ahn JS, Kim SM, Kim MY, Hong JA, et al: Serum- and glucocorticoid-inducible kinase 1 (SGK1) controls Notch1 signaling by downregulation of protein stability through Fbw7 ubiquitin ligase. J Cell Sci. 124:(Pt 1). 100–112. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schulein C, Eilers M and Popov N: PI3K-dependent phosphorylation of Fbw7 modulates substrate degradation and activity. FEBS Lett. 585:2151–2157. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cao J, Ge MH and Ling ZQ: Fbxw7 tumor suppressor: A vital regulator contributes to human tumorigenesis. Medicine (Baltimore). 95:e24962016. View Article : Google Scholar : PubMed/NCBI | |
Akhoondi S, Lindstrom L, Widschwendter M, Corcoran M, Bergh J, Spruck C, Grander D and Sangfelt O: Inactivation of FBXW7/hCDC4-β expression by promoter hypermethylation is associated with favorable prognosis in primary breast cancer. Breast Cancer Res. 12(R105)2010.PubMed/NCBI | |
Kitade S, Onoyama I, Kobayashi H, Yagi H, Yoshida S, Kato M, Tsunematsu R, Asanoma K, Sonoda K, Wake N, et al: FBXW7 is involved in the acquisition of the malignant phenotype in epithelial ovarian tumors. Cancer Sci. 107:1399–1405. 2016. View Article : Google Scholar : PubMed/NCBI | |
Min SH, Lau AW, Lee TH, Inuzuka H, Wei S, Huang P, Shaik S, Lee DY, Finn G, Balastik M, et al: Negative regulation of the stability and tumor suppressor function of Fbw7 by the Pin1 prolyl isomerase. Mol Cell. 46:771–783. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ji S, Qin Y, Shi S, Liu X, Hu H, Zhou H, Gao J, Zhang B, Xu W, Liu J, et al: ERK kinase phosphorylates and destabilizes the tumor suppressor FBW7 in pancreatic cancer. Cell Res. 25:561–573. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cizmecioglu O, Krause A, Bahtz R, Ehret L, Malek N and Hoffmann I: Plk2 regulates centriole duplication through phosphorylation-mediated degradation of Fbxw7 (human Cdc4). J Cell Sci. 125:(Pt 4). 981–992. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Shin JH, Zhao R, Phan L, Wang H, Xue Y, Post SM, Ho Choi H, Chen JS, Wang E, et al: CSN6 drives carcinogenesis by positively regulating Myc stability. Nat Commun. 5:53842014. View Article : Google Scholar : PubMed/NCBI | |
Diefenbacher ME, Popov N, Blake SM, Schulein-Volk C, Nye E, Spencer-Dene B, Jaenicke LA, Eilers M and Behrens A: The deubiquitinase USP28 controls intestinal homeostasis and promotes colorectal cancer. J Clin Invest. 124:3407–3418. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schulein-Volk C, Wolf E, Zhu J, Xu W, Taranets L, Hellmann A, Janicke LA, Diefenbacher ME, Behrens A, Eilers M and Popov N: Dual regulation of Fbw7 function and oncogenic transformation by Usp28. Cell Rep. 9:1099–1109. 2014. View Article : Google Scholar : PubMed/NCBI | |
Welcker M, Larimore EA, Swanger J, Bengoechea-Alonso MT, Grim JE, Ericsson J, Zheng N and Clurman BE: Fbw7 dimerization determines the specificity and robustness of substrate degradation. Genes Dev. 27:2531–2536. 2013. View Article : Google Scholar : PubMed/NCBI | |
Davis RJ, Welcker M and Clurman BE: Tumor suppression by the Fbw7 ubiquitin ligase: Mechanisms and opportunities. Cancer Cell. 26:455–464. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Orlicky S, Lin Z, Willems A, Neculai D, Ceccarelli D, Mercurio F, Shilton BH, Sicheri F and Tyers M: Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination. Cell. 129:1165–1176. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bonetti P, Davoli T, Sironi C, Amati B, Pelicci PG and Colombo E: Nucleophosmin and its AML-associated mutant regulate c-Myc turnover through Fbw7 gamma. J Cell Biol. 182:19–26. 2008. View Article : Google Scholar : PubMed/NCBI | |
Durgan J and Parker PJ: Regulation of the tumour suppressor Fbw7α by PKC-dependent phosphorylation and cancer-associated mutations. Biochem J. 432:77–87. 2010. View Article : Google Scholar : PubMed/NCBI | |
Akhoondi S, Sun D, von der Lehr N, Apostolidou S, Klotz K, Maljukova A, Cepeda D, Fiegl H, Dafou D, Marth C, et al: FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res. 67:9006–9012. 2007. View Article : Google Scholar : PubMed/NCBI | |
King B, Trimarchi T, Reavie L, Xu L, Mullenders J, Ntziachristos P, Aranda-Orgilles B, Perez-Garcia A, Shi J, Vakoc C, et al: The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability. Cell. 153:1552–1566. 2013. View Article : Google Scholar : PubMed/NCBI | |
Davis H, Lewis A, Behrens A and Tomlinson I: Investigation of the atypical FBXW7 mutation spectrum in human tumours by conditional expression of a heterozygous propellor tip missense allele in the mouse intestines. Gut. 63:792–799. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ju Y, Yu A, Sun X, Wu D and Zhang H: Glucosamine, a naturally occurring amino monosaccharide, inhibits A549 and H446 cell proliferation by blocking G1/S transition. Mol Med Rep. 8:794–798. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dong JT and Chen C: Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases. Cell Mol Life Sci. 66:2691–2706. 2009. View Article : Google Scholar : PubMed/NCBI | |
Klotz K, Cepeda D, Tan Y, Sun D, Sangfelt O and Spruck C: SCF(Fbxw7/hCdc4) targets cyclin E2 for ubiquitin-dependent proteolysis. Exp Cell Res. 315:1832–1839. 2009. View Article : Google Scholar : PubMed/NCBI | |
Byrd KN, Huey B, Roydasgupta R, Fridlyand J, Snijders AM and Albertson DG: FBXW7 and DNA copy number instability. Breast Cancer Res Treat. 109:47–54. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhang Y, Wu S, Xu M, Shen Y, Yu M, Fan J, Wei S, Xu C, Huang L, et al: Palmatine induces G2/M phase arrest and mitochondrial-associated pathway apoptosis in colon cancer cells by targeting AURKA. Biochem Pharmacol. 175:1139332020. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Bao J, Zhao S, Huo Z and Li B: MicroRNA-490-3p suppresses hepatocellular carcinoma cell proliferation and migration by targeting the aurora kinase A gene (AURKA). Arch Med Sci. 16:395–406. 2019. View Article : Google Scholar : PubMed/NCBI | |
Finkin S, Aylon Y, Anzi S, Oren M and Shaulian E: Fbw7 regulates the activity of endoreduplication mediators and the p53 pathway to prevent drug-induced polyploidy. Oncogene. 27:4411–4421. 2008. View Article : Google Scholar : PubMed/NCBI | |
McIntyre B, Asahara T and Alev C: Overview of basic mechanisms of notch signaling in development and disease. Adv Exp Med Biol. 1227:9–27. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nowell CS and Radtke F: Notch as a tumour suppressor. Nat Rev Cancer. 17:145–159. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bray SJ: Notch signalling in context. Nat Rev Mol Cell Biol. 17:722–735. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pancewicz J, Taylor JM, Datta A, Baydoun HH, Waldmann TA, Hermine O and Nicot C: Notch signaling contributes to proliferation and tumor formation of human T-cell leukemia virus type 1-associated adult T-cell leukemia. Proc Natl Acad Sci USA. 107:16619–16624. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wu G, Lyapina S, Das I, Li J, Gurney M, Pauley A, Chui I, Deshaies RJ and Kitajewski J: SEL-10 is an inhibitor of notch signaling that targets notch for ubiquitin-mediated protein degradation. Mol Cell Biol. 21:7403–7415. 2001. View Article : Google Scholar : PubMed/NCBI | |
Tsunematsu R, Nakayama K, Oike Y, Nishiyama M, Ishida N, Hatakeyama S, Bessho Y, Kageyama R, Suda T and Nakayama KI: Mouse Fbw7/Sel-10/Cdc4 is required for notch degradation during vascular development. J Biol Chem. 279:9417–9423. 2004. View Article : Google Scholar : PubMed/NCBI | |
Matsumoto A, Onoyama I, Sunabori T, Kageyama R, Okano H and Nakayama KI: Fbxw7-dependent degradation of Notch is required for control of ‘stemness’ and neuronal-glial differentiation in neural stem cells. J Biol Chem. 286:13754–13764. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang-Yen HF: Mcl-1: A highly regulated cell death and survival controller. J Biomed Sci. 13:201–204. 2006. View Article : Google Scholar : PubMed/NCBI | |
Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN and Clurman BE: The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA. 101:9085–9090. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kanei-Ishii C, Nomura T, Takagi T, Watanabe N, Nakayama KI and Ishii S: Fbxw7 acts as an E3 ubiquitin ligase that targets c-Myb for nemo-like kinase (NLK)-induced degradation. J Biol Chem. 283:30540–30548. 2008. View Article : Google Scholar : PubMed/NCBI | |
Popov N, Wanzel M, Madiredjo M, Zhang D, Beijersbergen R, Bernards R, Moll R, Elledge SJ and Eilers M: The ubiquitin-specific protease USP28 is required for MYC stability. Nat Cell Biol. 9:765–774. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li M, Ouyang L, Zheng Z, Xiang D, Ti A, Li L, Dan Y, Yu C and Li W: E3 ubiquitin ligase FBW7α inhibits cholangiocarcinoma cell proliferation by downregulating c-Myc and cyclin E. Oncol Rep. 37:1627–1636. 2017. View Article : Google Scholar : PubMed/NCBI | |
Qin J, Zhou Z, Chen W, Wang C, Zhang H, Ge G, Shao M, You D, Fan Z, Xia H, et al: BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5. Nat Commun. 6:84712015. View Article : Google Scholar : PubMed/NCBI | |
Liu N, Li H, Li S, Shen M, Xiao N, Chen Y, Wang Y, Wang W, Wang R, Wang Q, et al: The Fbw7/human CDC4 tumor suppressor targets proproliferative factor KLF5 for ubiquitination and degradation through multiple phosphodegron motifs. J Biol Chem. 285:18858–18867. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhao D, Zheng HQ, Zhou Z and Chen C: The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation. Cancer Res. 70:4728–4738. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rottmann S, Wang Y, Nasoff M, Deveraux QL and Quon KC: A TRAIL receptor-dependent synthetic lethal relationship between MYC activation and GSK3beta/FBW7 loss of function. Proc Natl Acad Sci USA. 102:15195–15200. 2005. View Article : Google Scholar : PubMed/NCBI | |
Goga A, Yang D, Tward AD, Morgan DO and Bishop JM: Inhibition of CDK1 as a potential therapy for tumors over-expressing MYC. Nat Med. 13:820–827. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Ulbrich J, Muller J, Wustefeld T, Aeberhard L, Kress TR, Muthalagu N, Rycak L, Rudalska R, Moll R, et al: Deregulated MYC expression induces dependence upon AMPK-related kinase 5. Nature. 483:608–612. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chauhan D, Tian Z, Nicholson B, Kumar KG, Zhou B, Carrasco R, McDermott JL, Leach CA, Fulcinniti M, Kodrasov MP, et al: A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell. 22:345–358. 2012. View Article : Google Scholar : PubMed/NCBI | |
Grim JE, Knoblaugh SE, Guthrie KA, Hagar A, Swanger J, Hespelt J, Delrow JJ, Small T, Grady WM, Nakayama KI and Clurman BE: Fbw7 and p53 cooperatively suppress advanced and chromosomally unstable intestinal cancer. Mol Cell Biol. 32:2160–2167. 2012. View Article : Google Scholar : PubMed/NCBI | |
Selivanova G and Wiman KG: Reactivation of mutant p53: Molecular mechanisms and therapeutic potential. Oncogene. 26:2243–2254. 2007. View Article : Google Scholar : PubMed/NCBI | |
Csizmok V, Montecchio M, Lin H, Tyers M, Sunnerhagen M and Forman-Kay JD: Multivalent interactions with Fbw7 and Pin1 facilitate recognition of c-Jun by the SCFFbw7 Ubiquitin Ligase. Structure. 26:28–39.e2. 2018. View Article : Google Scholar : PubMed/NCBI |