Ambiguous roles and potential therapeutic strategies of innate lymphoid cells in different types of tumor (Review)
- Authors:
- Shijie Wang
- Pin Wu
- Yongyuan Chen
- Ying Chai
-
Affiliations: Department of Thoracic Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China - Published online on: June 16, 2020 https://doi.org/10.3892/ol.2020.11736
- Pages: 1513-1525
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Withers DR: Innate lymphoid cell regulation of adaptive immunity. Immunology. 149:123–130. 2016. View Article : Google Scholar : PubMed/NCBI | |
Iwasaki A and Medzhitov R: Regulation of adaptive immunity by the innate immune system. Science. 327:291–295. 2010. View Article : Google Scholar : PubMed/NCBI | |
Eberl G, Colonna M, Di Santo JP and McKenzie AN: Innate lymphoid cells. Innate lymphoid cells: A new paradigm in immunology. Science. 348:aaa65662015. View Article : Google Scholar : PubMed/NCBI | |
Ebbo M, Crinier A, Vély F and Vivier E: Innate lymphoid cells: Major players in inflammatory diseases. Nat Rev Immunol. 17:665–678. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kumar V: Innate lymphoid cells: New paradigm in immunology of inflammation. Immunol Lett. 157:23–37. 2014. View Article : Google Scholar : PubMed/NCBI | |
Artis D and Spits H: The biology of innate lymphoid cells. Nature. 517:293–301. 2015. View Article : Google Scholar : PubMed/NCBI | |
Spits H and Cupedo T: Innate lymphoid cells: Emerging insights in development, lineage relationships, and function. Annu Rev Immunol. 30:647–675. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kiessling R, Klein E, Pross H and Wigzell H: ‘Natural’ killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol. 5:117–121. 1975. View Article : Google Scholar : PubMed/NCBI | |
Kiessling R, Klein E and Wigzell H: ‘Natural’ killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol. 5:112–117. 1975. View Article : Google Scholar : PubMed/NCBI | |
Mebius RE, Rennert P and Weissman IL: Developing lymph nodes collect CD4+CD3- LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity. 7:493–504. 1997. View Article : Google Scholar : PubMed/NCBI | |
Cella M, Fuchs A, Vermi W, Facchetti F, Otero K, Lennerz JK, Doherty JM, Mills JC and Colonna M: A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature. 457:722–725. 2009. View Article : Google Scholar : PubMed/NCBI | |
Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, Furusawa J, Ohtani M, Fujii H and Koyasu S: Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature. 463:540–544. 2010. View Article : Google Scholar : PubMed/NCBI | |
Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TK, Bucks C, Kane CM, Fallon PG, Pannell R, et al: Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature. 464:1367–1370. 2010. View Article : Google Scholar : PubMed/NCBI | |
Saglani S: Innate helper cells: A novel cell type essential in the initiation of asthma? Thorax. 66:834–835. 2011. View Article : Google Scholar : PubMed/NCBI | |
Saenz SA, Siracusa MC, Perrigoue JG, Spencer SP, Urban JF Jr, Tocker JE, Budelsky AL, Kleinschek MA, Kastelein RA, Kambayashi T, et al: IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature. 464:1362–1366. 2010. View Article : Google Scholar : PubMed/NCBI | |
Koyasu S, Moro K, Tanabe M and Takeuchi T: Natural helper cells: A new player in the innate immune response against helminth infection. Adv Immunol. 108:21–44. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S, Newberry RD, Cella M and Colonna M: Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity. 38:769–781. 2013. View Article : Google Scholar : PubMed/NCBI | |
Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie AN, Mebius RE, et al: Innate lymphoid cells-a proposal for uniform nomenclature. Nat Rev Immunol. 13:145–149. 2013. View Article : Google Scholar : PubMed/NCBI | |
Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie ANJ, Mebius RE, et al: Innate lymphoid cells: 10 years on. Cell. 174:1054–1066. 2018. View Article : Google Scholar : PubMed/NCBI | |
Morvan MG and Lanier LL: NK cells and cancer: You can teach innate cells new tricks. Nat Rev Cancer. 16:7–19. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guillerey C and Smyth MJ: NK cells and cancer immunoediting. Curr Top Microbiol Immunol. 395:115–145. 2016.PubMed/NCBI | |
Klose CS and Artis D: Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol. 17:765–774. 2016. View Article : Google Scholar : PubMed/NCBI | |
Simoni Y, Fehlings M, Kløverpris HN, McGovern N, Koo SL, Loh CY, Lim S, Kurioka A, Fergusson JR, Tang CL, et al: Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency. Immunity. 46:148–161. 2017. View Article : Google Scholar : PubMed/NCBI | |
Spits H, Bernink JH and Lanier L: NK cells and type 1 innate lymphoid cells: Partners in host defense. Nat Immunol. 17:758–764. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bernink JH, Peters CP, Munneke M, te Velde AA, Meijer SL, Weijer K, Hreggvidsdottir HS, Heinsbroek SE, Legrand N, Buskens CJ, et al: Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol. 14:221–229. 2013. View Article : Google Scholar : PubMed/NCBI | |
Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG, Doering TA, Angelosanto JM, Laidlaw BJ, Yang CY, Sathaliyawala T, et al: Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol. 12:1045–1054. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gieseck RL III, Wilson MS and Wynn TA: Type 2 immunity in tissue repair and fibrosis. Science. 18:62–76. 2018. | |
Goc J, Hepworth MR and Sonnenberg GF: Group 3 innate lymphoid cells: Regulating host-commensal bacteria interactions in inflammation and cancer. Int Immunol. 28:43–52. 2016.PubMed/NCBI | |
Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM, Gong Q, Abbas AR, Modrusan Z, Ghilardi N, de Sauvage FJ and Ouyang W: Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med. 14:282–289. 2008. View Article : Google Scholar : PubMed/NCBI | |
Klose CS, Kiss EA, Schwierzeck V, Ebert K, Hoyler T, d'Hargues Y, Göppert N, Croxford AL, Waisman A, Tanriver Y and Diefenbach A: A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells. Nature. 494:261–265. 2013. View Article : Google Scholar : PubMed/NCBI | |
Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman DR, Maloy KJ and Powrie F: Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature. 464:1371–1375. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kim HY, Lee HJ, Chang YJ, Pichavant M, Shore SA, Fitzgerald KA, Iwakura Y, Israel E, Bolger K, Faul J, et al: Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med. 20:54–61. 2014. View Article : Google Scholar : PubMed/NCBI | |
Scandella E, Bolinger B, Lattmann E, Miller S, Favre S, Littman DR, Finke D, Luther SA, Junt T and Ludewig B: Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nat Immunol. 9:667–675. 2008. View Article : Google Scholar : PubMed/NCBI | |
Singh N, Baby D, Rajguru JP, Patil PB, Thakkannavar SS and Pujari VB: Inflammation and cancer. Ann Afr Med. 18:121–126. 2019. View Article : Google Scholar : PubMed/NCBI | |
Balkwill F and Mantovani A: Inflammation and cancer: Back to Virchow? Lancet. 357:539–545. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yang S, Tian Z, Wu Y, van Velkinburgh JC and Ni B: Pivotal roles of ILCs in hepatic diseases. Int Rev Immunol. 34:509–522. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sun C, Sun H, Zhang C and Tian Z: NK cell receptor imbalance and NK cell dysfunction in HBV infection and hepatocellular carcinoma. Cell Mol Immunol. 12:292–302. 2015. View Article : Google Scholar : PubMed/NCBI | |
Han X, Huang T and Han J: Cytokines derived from innate lymphoid cells assist Helicobacter hepaticus to aggravate hepatocellular tumorigenesis in viral transgenic mice. Gut Pathog. 11:232019. View Article : Google Scholar : PubMed/NCBI | |
McHedlidze T, Waldner M, Zopf S, Walker J, Rankin AL, Schuchmann M, Voehringer D, McKenzie AN, Neurath MF, Pflanz S and Wirtz S: Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity. 39:357–371. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li J, Razumilava N, Gores GJ, Walters S, Mizuochi T, Mourya R, Bessho K, Wang YH, Glaser SS, Shivakumar P and Bezerra JA: Biliary repair and carcinogenesis are mediated by IL-33-dependent cholangiocyte proliferation. J Clin Invest. 124:3241–3251. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jiang R, Tan Z, Deng L, Chen Y, Xia Y, Gao Y, Wang X and Sun B: Interleukin-22 promotes human hepatocellular carcinoma by activation of STAT3. Hepatology. 54:900–909. 2011. View Article : Google Scholar : PubMed/NCBI | |
Geremia A, Arancibia-Cárcamo CV, Fleming MP, Rust N, Singh B, Mortensen NJ, Travis SP and Powrie F: IL-23- responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med. 208:1127–1133. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fuchs A and Colonna M: Innate lymphoid cells in homeostasis, infection, chronic inflammation and tumors of the gastrointestinal tract. Curr Opin Gastroenterol. 29:581–587. 2013. View Article : Google Scholar : PubMed/NCBI | |
Castleman MJ, Dillon SM, Purba CM, Cogswell AC, Kibbie JJ, McCarter MD, Santiago ML, Barker E and Wilson CC: Commensal and pathogenic bacteria indirectly induce IL-22 but Not IFNγ production from human colonic ILC3s via multiple mechanisms. Front Immunol. 10:6492019. View Article : Google Scholar : PubMed/NCBI | |
Man SM: Inflammasomes in the gastrointestinal tract: Infection, cancer and gut microbiota homeostasis. Nat Rev Gastroenterol Hepatol. 15:721–737. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chan IH, Jain R, Tessmer MS, Gorman D, Mangadu R, Sathe M, Vives F, Moon C, Penaflor E, Turner S, et al: Interleukin-23 is sufficient to induce rapid de novo gut tumorigenesis, independent of carcinogens, through activation of innate lymphoid cells. Mucosal Immunol. 7:842–856. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kirchberger S, Royston DJ, Boulard O, Thornton E, Franchini F, Szabady RL, Harrison O and Powrie F: Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J Exp Med. 210:917–931. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bergmann H, Roth S, Pechloff K, Kiss EA, Kuhn S, Heikenwälder M, Diefenbach A, Greten FR and Ruland J: Card9-dependent IL-1β regulates IL-22 production from group 3 innate lymphoid cells and promotes colitis-associated cancer. Eur J Immunol. 47:1342–1353. 2017. View Article : Google Scholar : PubMed/NCBI | |
Saadalla AM, Osman A, Gurish MF, Dennis KL, Blatner NR, Pezeshki A, McNagny KM, Cheroutre H, Gounari F and Khazaie K: Mast cells promote small bowel cancer in a tumor stage-specific and cytokine-dependent manner. Proc Natl Acad Sci USA. 115:1588–1592. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chang WJ, Du Y, Zhao X, Ma LY and Cao GW: Inflammation- related factors predicting prognosis of gastric cancer. World J Gastroenterol. 20:4586–4596. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bie Q, Zhang P, Su Z, Zheng D, Ying X, Wu Y, Yang H, Chen D, Wang S and Xu H: Polarization of ILC2s in peripheral blood might contribute to immunosuppressive microenvironment in patients with gastric cancer. J Immunol Res. 2014:9231352014. View Article : Google Scholar : PubMed/NCBI | |
Salimi M, Wang R, Yao X, Li X, Wang X, Hu Y, Chang X, Fan P, Dong T and Ogg G: Activated innate lymphoid cell populations accumulate in human tumour tissues. BMC Cancer. 18:3412018. View Article : Google Scholar : PubMed/NCBI | |
Trabanelli S, Curti A, Lecciso M, Salomé B, Riether C, Ochsenbein A, Romero P and Jandus C: CD127+ innate lymphoid cells are dysregulated in treatment naïve acute myeloid leukemia patients at diagnosis. Haematologica. 100:e257–e260. 2015. View Article : Google Scholar : PubMed/NCBI | |
Munneke JM, Björklund AT, Mjösberg JM, Garming-Legert K, Bernink JH, Blom B, Huisman C, van Oers MH, Spits H, Malmberg KJ and Hazenberg MD: Activated innate lymphoid cells are associated with a reduced susceptibility to graft-versus-host disease. Blood. 124:812–821. 2014. View Article : Google Scholar : PubMed/NCBI | |
Trabanelli S, Chevalier MF, Martinez-Usatorre A, Gomez- Cadena A, Salomé B, Lecciso M, Salvestrini V, Verdeil G, Racle J, Papayannidis C, et al: Tumour-derived PGD2 and NKp30-B7H6 engagement drives an immunosuppressive ILC2-MDSC axis. Nat Commun. 8:5932017. View Article : Google Scholar : PubMed/NCBI | |
de Weerdt I, van Hoeven V, Munneke JM, Endstra S, Hofland T, Hazenberg MD and Kater AP: Innate lymphoid cells are expanded and functionally altered in chronic lymphocytic leukemia. Haematologica. 101:e461–e464. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schleussner N, Merkel O, Costanza M, Liang HC, Hummel F, Romagnani C, Durek P, Anagnostopoulos I, Hummel M, Jöhrens K, et al: The AP-1-BATF and -BATF3 module is essential for growth, survival and TH17/ILC3 skewing of anaplastic large cell lymphoma. Leukemia. 32:1994–2007. 2018. View Article : Google Scholar : PubMed/NCBI | |
Harbeck N and Gnant M: Breast cancer. Lancet. 389:1134–1150. 2017. View Article : Google Scholar : PubMed/NCBI | |
Stein JV and Nombela-Arrieta C: Chemokine control of lymphocyte trafficking: A general overview. Immunology. 116:1–12. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jovanovic IP, Pejnovic NN, Radosavljevic GD, Pantic JM, Milovanovic MZ, Arsenijevic NN and Lukic ML: Interleukin-33/ST2 axis promotes breast cancer growth and metastases by facilitating intratumoral accumulation of immunosuppressive and innate lymphoid cells. Int J Cancer. 134:1669–1682. 2014. View Article : Google Scholar : PubMed/NCBI | |
Irshad S, Flores-Borja F, Lawler K, Monypenny J, Evans R, Male V, Gordon P, Cheung A, Gazinska P, Noor F, et al: RORγt+ innate lymphoid cells promote lymph node metastasis of breast cancers. Cancer Res. 77:1083–1096. 2017. View Article : Google Scholar : PubMed/NCBI | |
Carrega P, Loiacono F, Di Carlo E, Scaramuccia A, Mora M, Conte R, Benelli R, Spaggiari GM, Cantoni C, Campana S, et al: NCR(+)ILC3 concentrate in human lung cancer and associate with intratumoral lymphoid structures. Nat Commun. 6:82802015. View Article : Google Scholar : PubMed/NCBI | |
Koh J, Kim HY, Lee Y, Park IK, Kang CH, Kim YT, Kim JE, Choi M, Lee WW, Jeon YK and Chung DH: IL23-producing human lung cancer cells promote tumor growth via conversion of innate lymphoid cell 1 (ILC1) into ILC3. Clin Cancer Res. 25:4026–4037. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Yan Y, Su Z, Bie Q, Chen X, Barnie PA, Guo Q, Wang S and Xu H: Enhanced circulating ILC2s and MDSCs may contribute to ensure maintenance of Th2 predominant in patients with lung cancer. Mol Med Rep. 15:4374–4381. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cui W, Zhang W, Yuan X, Liu S, Li M, Niu J, Zhang P and Li D: Vitamin A deficiency execrates Lewis lung carcinoma via induction of type 2 innate lymphoid cells and alternatively activates macrophages. Food Sci Nutr. 7:1288–1294. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bruchard M and Ghiringhelli F: Deciphering the roles of innate lymphoid cells in cancer. Front Immunol. 10:6562019. View Article : Google Scholar : PubMed/NCBI | |
Eisenring M, vom Berg J, Kristiansen G, Saller E and Becher B: IL-12 initiates tumor rejection via lymphoid tissue-inducer cells bearing the natural cytotoxicity receptor NKp46. Nat Immunol. 11:1030–1038. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lotfi R, Lee JJ and Lotze MT: Eosinophilic granulocytes and damage-associated molecular pattern molecules (DAMPs): Role in the inflammatory response within tumors. J Immunother. 30:16–28. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ikutani M, Yanagibashi T, Ogasawara M, Tsuneyama K, Yamamoto S, Hattori Y, Kouro T, Itakura A, Nagai Y, Takaki S and Takatsu K: Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity. J Immunol. 188:703–713. 2012. View Article : Google Scholar : PubMed/NCBI | |
Moskalenko M, Pan M, Fu Y, de Moll EH, Hashimoto D, Mortha A, Leboeuf M, Jayaraman P, Bernardo S, Sikora AG, et al: Requirement for innate immunity and CD90+ NK1.1− lymphocytes to treat established melanoma with chemo-immunotherapy. Cancer Immunol Res. 3:296–304. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shields JD, Kourtis IC, Tomei AA, Roberts JM and Swartz MA: Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science. 328:749–752. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chevalier MF, Trabanelli S, Racle J, Salomé B, Cesson V, Gharbi D, Bohner P, Domingos-Pereira S, Dartiguenave F, Fritschi AS, et al: ILC2-modulated T cell-to-MDSC balance is associated with bladder cancer recurrence. J Clin Invest. 127:2916–2929. 2017. View Article : Google Scholar : PubMed/NCBI | |
Crome SQ, Nguyen LT, Lopez-Verges S, Yang SY, Martin B, Yam JY, Johnson DJ, Nie J, Pniak M, Yen PH, et al: A distinct innate lymphoid cell population regulates tumor-associated T cells. Nat Med. 23:368–375. 2017. View Article : Google Scholar : PubMed/NCBI | |
Punt S, Fleuren GJ, Kritikou E, Lubberts E, Trimbos JB, Jordanova ES and Gorter A: Angels and demons: Th17 cells represent a beneficial response, while neutrophil IL-17 is associated with poor prognosis in squamous cervical cancer. Oncoimmunology. 4:e9845392015. View Article : Google Scholar : PubMed/NCBI | |
Bonelli M, Shih HY, Hirahara K, Singelton K, Laurence A, Poholek A, Hand T, Mikami Y, Vahedi G, Kanno Y and O'Shea JJ: Helper T cell plasticity: Impact of extrinsic and intrinsic signals on transcriptomes and epigenomes. Curr Top Microbiol Immunol. 381:279–326. 2014.PubMed/NCBI | |
Gaffen SL, Jain R, Garg AV and Cua DJ: The IL-23-IL-17 immune axis: From mechanisms to therapeutic testing. Nat Rev Immunol. 14:585–600. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mucida D, Husain MM, Muroi S, van Wijk F, Shinnakasu R, Naoe Y, Reis BS, Huang Y, Lambolez F, Docherty M, et al: Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat Immunol. 14:281–289. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Souza-Fonseca-Guimaraes F, Bald T, Ng SS, Young A, Ngiow SF, Rautela J, Straube J, Waddell N, Blake SJ, et al: Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat Immunol. 18:1004–1015. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cortez VS, Ulland TK, Cervantes-Barragan L, Bando JK, Robinette ML, Wang Q, White AJ, Gilfillan S, Cella M and Colonna M: SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling. Nat Immunol. 18:995–1003. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chea S, Perchet T, Petit M, Verrier T, Guy-Grand D, Banchi EG, Vosshenrich CA, Di Santo JP, Cumano A and Golub R: Notch signaling in group 3 innate lymphoid cells modulates their plasticity. Sci Signal. 9:ra452016. View Article : Google Scholar : PubMed/NCBI | |
Viant C, Rankin LC, Girard-Madoux MJ, Seillet C, Shi W, Smyth MJ, Bartholin L, Walzer T, Huntington ND, Vivier E and Belz GT: Transforming growth factor-β and Notch ligands act as opposing environmental cues in regulating the plasticity of type 3 innate lymphoid cells. Sci Signal. 9:ra462016. View Article : Google Scholar : PubMed/NCBI | |
Bal SM, Bernink JH, Nagasawa M, Groot J, Shikhagaie MM, Golebski K, van Drunen CM, Lutter R, Jonkers RE, Hombrink P, et al: IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat Immunol. 17:636–645. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lim AI, Menegatti S, Bustamante J, Le Bourhis L, Allez M, Rogge L, Casanova JL, Yssel H and Di Santo JP: IL-12 drives functional plasticity of human group 2 innate lymphoid cells. J Exp Med. 213:569–583. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ohne Y, Silver JS, Thompson-Snipes L, Collet MA, Blanck JP, Cantarel BL, Copenhaver AM, Humbles AA and Liu YJ: IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. Nat Immunol. 17:646–655. 2016. View Article : Google Scholar : PubMed/NCBI | |
Silver JS, Kearley J, Copenhaver AM, Sanden C, Mori M, Yu L, Pritchard GH, Berlin AA, Hunter CA, Bowler R, et al: Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nat Immunol. 17:626–635. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bernink JH, Krabbendam L, Germar K, de Jong E, Gronke K, Kofoed-Nielsen M, Munneke JM, Hazenberg MD, Villaudy J, Buskens CJ, et al: Interleukin-12 and −23 control plasticity of CD127(+) group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity. 43:146–160. 2015. View Article : Google Scholar : PubMed/NCBI | |
Crellin NK, Trifari S, Kaplan CD, Satoh-Takayama N, Di Santo JP and Spits H: Regulation of cytokine secretion in human CD127(+) LTi-like innate lymphoid cells by Toll-like receptor 2. Immunity. 33:752–764. 2010. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Guo L, Qiu J, Chen X, Hu-Li J, Siebenlist U, Williamson PR, Urban JF Jr and Paul WE: IL-25-responsive, lineage-negative KLRG1(hi) cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells. Nat Immunol. 16:161–169. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pietra G, Vitale C, Pende D, Bertaina A, Moretta F, Falco M, Vacca P, Montaldo E, Cantoni C, Mingari MC, et al: Human natural killer cells: News in the therapy of solid tumors and high-risk leukemias. Cancer Immunol Immunother. 65:465–476. 2016. View Article : Google Scholar : PubMed/NCBI | |
Baumeister SH, Freeman GJ, Dranoff G and Sharpe AH: Coinhibitory pathways in immunotherapy for cancer. Annu Rev Immunol. 34:539–573. 2016. View Article : Google Scholar : PubMed/NCBI | |
Khalil DN, Smith EL, Brentjens RJ and Wolchok JD: The future of cancer treatment: Immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 13:273–290. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ribas A and Wolchok JD: Cancer immunotherapy using checkpoint blockade. Science. 359:1350–1355. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mallett G, Laurence A and Amarnath S: Programmed cell death-1 receptor (PD-1)-mediated regulation of innate lymphoid cells. Int J Mol Sci. 20(pii): E28362019. View Article : Google Scholar : PubMed/NCBI | |
Tumino N, Martini S, Munari E, Tumino N, Martini S, Munari E, Scordamaglia F, Besi F, Mariotti FR, Bogina G, et al: Presence of innate lymphoid cells in pleural effusions of primary and metastatic tumors: Functional analysis and expression of PD-1 receptor. Int J Cancer. 145:1660–1668. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Zheng N, Luo Q, Jiang L, He B, Yuan X and Shen L: Probiotics lactobacillus reuteri abrogates immune checkpoint blockade-associated colitis by inhibiting group 3 innate lymphoid cells. Front Immunol. 10:12352019. View Article : Google Scholar : PubMed/NCBI | |
Turchinovich G, Ganter S, Bärenwaldt A and Finke D: NKp46 Calibrates tumoricidal potential of type 1 innate lymphocytes by regulating TRAIL expression. J Immunol. 200:3762–3768. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zaiss DMW, Gause WC, Osborne LC and Artis D: Emerging functions of amphiregulin in orchestrating immunity, inflammation, and tissue repair. Immunity. 42:216–226. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lu B, Yang M and Wang Q: Interleukin-33 in tumorigenesis, tumor immune evasion, and cancer immunotherapy. J Mol Med (Berl). 94:535–543. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hanash AM, Dudakov JA, Hua G, O'Connor MH, Young LF, Singer NV, West ML, Jenq RR, Holland AM, Kappel LW, et al: Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease. Immunity. 37:339–350. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lim C and Savan R: The role of the IL-22/IL-22R1 axis in cancer. Cytokine Growth Factor Rev. 25:257–271. 2014. View Article : Google Scholar : PubMed/NCBI | |
Markota A, Endres S and Kobold S: Targeting interleukin-22 for cancer therapy. Hum Vaccin Immunother. 14:2012–2015. 2018. View Article : Google Scholar : PubMed/NCBI | |
Song Y and Yang JM: Role of interleukin (IL)-17 and T-helper (Th)17 cells in cancer. s. 493:1–8. 2017. | |
Kathania M, Khare P, Zeng M, Cantarel B, Zhang H, Ueno H and Venuprasad K: Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-γt ubiquitination. Nat Immunol. 17:997–1004. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Kim W, Moon UJ, Kim HJ, Choi HJ, Sin JI, Park NH, Cho HR and Kwon B: Intratumorally establishing type 2 innate lymphoid cells blocks tumor growth. J Immunol. 196:2410–2423. 2016. View Article : Google Scholar : PubMed/NCBI |