1
|
Rawla P, Sunkara T and Gaduputi V:
Epidemiology of pancreatic cancer: Global trends, etiology and risk
factors. World J Oncol. 10:10–27. 2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ferrone CR, Brennan MF, Gonen M, Coit DG,
Fong Y, Chung S, Tang L, Klimstra D and Allen PJ: Pancreatic
adenocarcinoma: The actual 5-year survivors. J Gastrointest Surg.
12:701–706. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Trajkovic-Arsic M, Kalideris E and Siveke
JT: The role of insulin and IGF system in pancreatic cancer. J Mol
Endocrinol. 50:R67–R74. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Valsecchi ME, McDonald M, Brody JR, Hyslop
T, Freydin B, Yeo CJ, Solomides C, Peiper SC and Witkiewicz AK:
Epidermal growth factor receptor and insulinlike growth factor 1
receptor expression predict poor survival in pancreatic ductal
adenocarcinoma. Cancer. 118:3484–3493. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Nandy D and Mukhopadhyay D: Growth factor
mediated signaling in pancreatic pathogenesis. Cancers (Basel).
3:841–871. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Faller BA and Burtness B: Treatment of
pancreatic cancer with epidermal growth factor receptor-targeted
therapy. Biologics. 3:419–428. 2009.PubMed/NCBI
|
8
|
Zielinski R, Przytycki PF, Zheng J, Zhang
D, Przytycka TM and Capala J: The crosstalk between EGF, IGF, and
Insulin cell signaling pathways-computational and experimental
analysis. BMC Syst Biol. 3:882009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bergmann U: Insulin-like growth factor I
overexpression in human pancreatic cancer: Evidence for autocrine
and paracrine roles. Cancer Res. 55:2007–2011. 1995.PubMed/NCBI
|
10
|
Chakravarti A, Loeffler JS and Dyson NJ:
Insulin-like growth factor receptor I mediates resistance to
anti-epidermal growth factor receptor therapy in primary human
glioblastoma cells through continued activation of phosphoinositide
3-kinase signaling. Cancer Res. 62:200–207. 2002.PubMed/NCBI
|
11
|
LeRoith D and Roberts Jr CT: The
insulin-like growth factor system and cancer. Cancer Lett.
195:127–137. 2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Mutgan AC, Besikcioglu HE, Wang S, Friess
H, Ceyhan GO and Demir IE: Insulin/IGF-driven cancer cell-stroma
crosstalk as a novel therapeutic target in pancreatic cancer. Mol
Cancer. 17:662018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Singh P, Alex JM and Bast F: Insulin
receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R)
signaling systems: Novel treatment strategies for cancer. Med
Oncol. 31:8052014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liu W, Bloom DA, Cance WG, Kurenova EV,
Golubovskaya VM and Hochwald SN: FAK and IGF-IR interact to provide
survival signals in human pancreatic adenocarcinoma cells.
Carcinogenesis. 29:1096–1107. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ma J, Sawai H, Matsuo Y, Ochi N, Yasuda A,
Takahashi H, Wakasugi T, Funahashi H, Sato M and Takeyama H: IGF-1
mediates PTEN suppression and enhances cell invasion and
proliferation via activation of the IGF-1/PI3K/Akt signaling
pathway in pancreatic cancer cells. J Surg Res. 160:90–101. 2010.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Neid M, Datta K, Stephan S, Khanna I, Pal
S, Shaw L, White M and Mukhopadhyay D: Role of insulin receptor
substrates and protein kinase C-zeta in vascular permeability
factor/vascular endothelial growth factor expression in pancreatic
cancer cells. J Biol Chem. 279:3941–3948. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Nweke E, Ntwasa M, Brand M, Devar J, Smith
M and Candy G: Increased expression of plakoglobin is associated
with upregulated MAPK and PI3K/AKT signalling pathways in early
resectable pancreatic ductal adenocarcinoma. Oncol Lett.
19:4133–4141. 2020.PubMed/NCBI
|
18
|
Khan MA, Zubair H, Srivastava SK, Singh S
and Singh AP: Insights into the role of microRNAs in pancreatic
cancer pathogenesis: Potential for diagnosis, prognosis, and
therapy. Adv Exp Med Biol. 889:71–87. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mattick JS and Gagen MJ: The evolution of
controlled multitasked gene networks: The role of introns and other
noncoding RNAs in the development of complex organisms. Mol Biol
Evol. 18:1611–1630. 2001. View Article : Google Scholar : PubMed/NCBI
|
20
|
Gong L, Wang C, Gao Y and Wang J:
Decreased expression of microRNA-148a predicts poor prognosis in
ovarian cancer and associates with tumor growth and metastasis.
Biomed Pharmacother. 83:58–63. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ono S, Lam S, Nagahara M and Hoon DS:
Circulating microRNA biomarkers as liquid biopsy for cancer
patients: Pros and cons of current assays. J Clin Med. 4:1890–1907.
2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Vafaee F, Diakos C, Kirschner MB, Reid G,
Michael MZ, Horvath LG, Alinejad-Rokny H, Cheng ZJ, Kuncic Z and
Clarke S: A data-driven, knowledge-based approach to biomarker
discovery: Application to circulating microRNA markers of
colorectal cancer prognosis. NPJ Syst Biol Appl. 4:202018.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Bratulic S, Gatto F and Nielsen J: The
translational status of cancer liquid biopsies. Regen Eng Transl
Med. Nov 25–2019. View Article : Google Scholar
|
24
|
Lawrie CH, Gal S, Dunlop HM, Pushkaran B,
Liggins AP, Pulford K, Banham AH, Pezzella F, Boultwood J,
Wainscoat JS, et al: Detection of elevated levels of
tumour-associated microRNAs in serum of patients with diffuse large
B-cell lymphoma. Br J Haematol. 141:672–675. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chun YS, Pawlik TM and Vauthey JN: 8th
Edition of the AJCC Cancer Staging Manual: Pancreas and
Hepatobiliary cancers. Ann Surg Oncol. 25:845–847. 2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Harris PA, Taylor R, Thielke R, Payne J,
Gonzalez N and Conde JG: Research electronic data capture
(REDCap)-A metadata-driven methodology and workflow process for
providing translational research informatics support. J Biomed
Inform. 42:377–381. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Conwell DL, Lee LS, Yadav D, Longnecker
DS, Miller FH, Mortele KJ, Levy MJ, Kwon R, Lieb JG, Stevens T, et
al: American pancreatic association practice guidelines in chronic
pancreatitis: Evidence-based report on diagnostic guidelines.
Pancreas. 43:1143–1162. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Löhr JM, Dominguez-Munoz E, Rosendahl J,
Besselink M, Mayerle J, Lerch MM, Haas S, Akisik F, Kartalis N,
Iglesias-Garcia J, et al: United European Gastroenterology
evidence-based guidelines for the diagnosis and therapy of chronic
pancreatitis (HaPanEU). United European Gastroenterol J. 5:153–199.
2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Lanoix D, Lacasse AA, St-Pierre J, Taylor
SC, Ethier-Chiasson M, Lafond J and Vaillancourt C: Quantitative
PCR Pitfalls: The case of the human placenta. Mol Biotechnol.
52:234–243. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
St-Pierre J, Grégoire JC and Vaillancourt
C: A simple method to assess group difference in RT-qPCR reference
gene selection using GeNorm: The case of the placental sex. Sci
Rep. 7:169232017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Chen SY, Feng Z and Yi X: A general
introduction to adjustment for multiple comparisons. J Thorac Dis.
9:1725–1729. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Reneker J and Shyu CR: Applying sequential
forward floating selection to protein structure prediction with a
study of HIV-1 RP. AMIA Annu Symp Proc. 2006:10722006.
|
34
|
Vlachos IS, Zagganas K, Paraskevopoulou
MD, Georgakilas G, Karagkouni D, Vergoulis T, Dalamagas T and
Hatzigeorgiou AG: DIANA-miRPath v3.0: Deciphering microRNA function
with experimental support. Nucleic Acids Res. 43:W460–W466. 2015.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Karagkouni D, Paraskevopoulou MD,
Chatzopoulos S, Vlachos IS, Tastsoglou S, Kanellos I, Papadimitriou
D, Kavakiotis I, Maniou S, Skoufos G, et al: DIANA-TarBase v8: A
decade-long collection of experimentally supported miRNA-gene
interactions. Nucleic Acids Res. 46:D239–D245. 2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kanehisa M and Goto S: KEGG: Kyoto
Encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30.
2000. View Article : Google Scholar : PubMed/NCBI
|
37
|
Warde-Farley D, Donaldson SL, Comes O,
Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT,
et al: The GeneMANIA prediction server: Biological network
integration for gene prioritization and predicting gene function.
Nucleic Acids Res. 38:W214–W220. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Huang Z, Shi J, Gao Y, Cui C, Zhang S, Li
J, Zhou Y and Cui Q: HMDD v3.0: A database for experimentally
supported human microRNA-disease associations. Nucleic Acids Res.
47:D1013–D1017. 2019. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kirkegård J, Mortensen FV and
Cronin-Fenton D: Chronic pancreatitis and pancreatic cancer Risk: A
systematic review and meta-analysis. Am J Gastroenterol.
112:1366–1372. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Li Y, VandenBoom TG, Kong D, Wang Z, Ali
S, Philip PA and Sarkar FH: Up-regulation of miR-200 and let-7 by
natural agents leads to the reversal of epithelial-to-mesenchymal
transition in gemcitabine-resistant pancreatic cancer cells. Cancer
Res. 69:6704–6712. 2009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Boyerinas B, Park SM, Hau A, Murmann AE
and Peter ME: The role of let-7 in cell differentiation and cancer.
Endocr Relat Cancer. 17:F19–F36. 2010. View Article : Google Scholar : PubMed/NCBI
|
42
|
Encarnación J, Ortiz C, Vergne R, Vargas
W, Coppola D and Matta JL: High DRC levels are associated with
Let-7b overexpression in women with breast cancer. Int J Mol Sci.
17:8652016. View Article : Google Scholar
|
43
|
Perkhofer L, Illing A, Gout J, Frappart PO
and Kleger A: Precision medicine meets the DNA damage response in
pancreatic cancer. Oncoscience. 5:6–8. 2018. View Article : Google Scholar : PubMed/NCBI
|
44
|
McWilliams RR, Bamlet WR, Cunningham JM,
Goode EL, de Andrade M, Boardman LA and Petersen GM: Polymorphisms
in DNA repair genes, smoking, and pancreatic adenocarcinoma risk.
Cancer Res. 68:4928–4935. 2008. View Article : Google Scholar : PubMed/NCBI
|
45
|
Torrisani J, Bournet B, du Rieu MC,
Bouisson M, Souque A, Escourrou J, Buscail L and Cordelier P: let-7
MicroRNA transfer in pancreatic cancer-derived cells inhibits in
vitro cell proliferation but fails to alter tumor progression. Hum
Gene Ther. 20:831–844. 2009. View Article : Google Scholar : PubMed/NCBI
|
46
|
Bao B, Ali S, Banerjee S, Wang Z, Logna F,
Azmi AS, Kong D, Ahmad A, Li Y, Padhye S and Sarkar FH: Curcumin
analogue CDF inhibits pancreatic tumor growth by switching on
suppressor microRNAs and attenuating EZH2 expression. Cancer Res.
72:335–345. 2012. View Article : Google Scholar : PubMed/NCBI
|
47
|
Bracci PM: Obesity and pancreatic cancer:
Overview of epidemiologic evidence and biologic mechanisms. Mol
Carcinog. 51:53–63. 2012. View Article : Google Scholar : PubMed/NCBI
|
48
|
Bowers LW, Rossi EL, O'Flanagan CH,
deGraffenried LA and Hursting SD: The role of the Insulin/IGF
system in cancer: Lessons learned from clinical trials and the
energy balance-cancer link. Front Endocrinol (Lausanne). 6:772015.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Zhu H, Shyh-Chang N, Segrè AV, Shinoda G,
Shah SP, Einhorn WS, Takeuchi A, Engreitz JM, Hagan JP, Kharas MG,
et al: The Lin28/let-7 axis regulates glucose metabolism. Cell.
147:81–94. 2011. View Article : Google Scholar : PubMed/NCBI
|
50
|
Bailyes EM, Navé BT, Soos MA, Orr SR,
Hayward AC and Siddle K: Insulin receptor/IGF-I receptor hybrids
are widely distributed in mammalian tissues: Quantification of
individual receptor species by selective immunoprecipitation and
immunoblotting. Biochem J. 327:209–215. 1997. View Article : Google Scholar : PubMed/NCBI
|
51
|
Pollak M: Insulin and insulin-like growth
factor signalling in neoplasia. Nat Rev Cancer. 8:915–928. 2008.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Ohmura E, Okada M, Onoda N, Kamiya Y,
Murakami H, Tsushima T and Shizume K: Insulin-like growth factor I
and transforming growth factor alpha as autocrine growth factors in
human pancreatic cancer cell growth. Cancer Res. 50:103–107.
1990.PubMed/NCBI
|
53
|
Ulanet DB, Ludwig DL, Kahn CR and Hanahan
D: Insulin receptor functionally enhances multistage tumor
progression and conveys intrinsic resistance to IGF-1R targeted
therapy. Proc Natl Acad Sci USA. 107:10791–10798. 2010. View Article : Google Scholar : PubMed/NCBI
|
54
|
Brahmkhatri VP, Prasanna C and Atreya HS:
Insulin-Like growth factor system in cancer: Novel targeted
therapies. Biomed Res Int. 2015:5380192015. View Article : Google Scholar : PubMed/NCBI
|
55
|
Eich ML, Tregnago AC, Faraj SF, Palsgrove
DN, Fujita K, Bezerra SM, Munari E, Sharma R, Chaux A and Netto GJ:
Insulin-like growth factor-1 receptor expression in upper tract
urothelial carcinoma. Virchows Arch. 474:21–27. 2019. View Article : Google Scholar : PubMed/NCBI
|
56
|
Ishiwata T, Bergmann U, Kornmann M, Lopez
M, Beger HG and Korc M: Altered expression of insulin-like growth
factor II receptor in human pancreatic cancer. Pancreas.
15:367–373. 1997. View Article : Google Scholar : PubMed/NCBI
|
57
|
Tian X, Hao K, Qin C, Xie K, Xie X and
Yang Y: Insulin-like growth factor 1 receptor promotes the growth
and chemoresistance of pancreatic cancer. Dig Dis Sci.
58:2705–2712. 2013. View Article : Google Scholar : PubMed/NCBI
|
58
|
Karna E, Surazynski A, Orłowski K,
Łaszkiewicz J, Puchalski Z, Nawrat P and Pałka J: Serum and tissue
level of insulin-like growth factor-I (IGF-I) and IGF-I binding
proteins as an index of pancreatitis and pancreatic cancer. Int J
Exp Pathol. 83:239–245. 2002. View Article : Google Scholar : PubMed/NCBI
|
59
|
Wan BS, Cheng M and Zhang L: Insulin-like
growth factor 2 mRNA-binding protein 1 promotes cell proliferation
via activation of AKT and is directly targeted by microRNA-494 in
pancreatic cancer. World J Gastroenterol. 25:6063–6076. 2019.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Dahlem C, Barghash A, Puchas P, Haybaeck J
and Kessler SM: The insulin-like growth factor 2 mRNA binding
protein IMP2/IGF2BP2 is overexpressed and correlates with poor
survival in pancreatic cancer. Int J Mol Sci. 20:32042019.
View Article : Google Scholar
|
61
|
Rhim AD, Oberstein PE, Thomas DH, Mirek
ET, Palermo CF, Sastra SA, Dekleva EN, Saunders T, Becerra CP,
Tattersall IW, et al: Stromal elements act to restrain, rather than
support, pancreatic ductal adenocarcinoma. Cancer Cell. 25:735–747.
2014. View Article : Google Scholar : PubMed/NCBI
|