1
|
Sieniawski MK: Epidemiology, prognosis and
treatment of aggressive non-Hodgkin lymphomas. Newcastle
University. 2017.
|
2
|
Vitolo U, Seymour JF, Martelli M,
Illerhaus G, Illidge T, Zucca E, Campo E and Ladetto M; ESMO
Guidelines Committee, : Extranodal diffuse large B-cell lymphoma
(DLBCL) and primary mediastinal B-cell lymphoma: ESMO Clinical
Practice Guidelines for diagnosis, treatment and follow-up. Ann
Oncol. 27 (Suppl 5):v91–v102. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Tilly H, Gomes da Silva M, Vitolo U, Jack
A, Meignan M, Lopez-Guillermo A, Walewski J, André M, Johnson PW,
Pfreundschuh M, et al: Diffuse large B-cell lymphoma (DLBCL): ESMO
Clinical Practice Guidelines for diagnosis, treatment and
follow-up. Ann Oncol. 26 (Suppl 5):v116–v125. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Avivi I, Canals C, Vernant JP, Wulf G,
Nagler A, Hermine O, Petersen E, Yakoub-Agha I, Craddock C,
Schattenberg A, Niederwieser D, et al: Matched unrelated donor
allogeneic transplantation provides comparable long-term outcome to
HLA-identical sibling transplantation in relapsed diffuse large
B-cell lymphoma. Bone Marrow Transplant. 49:671–678. 2014.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Aviles A, Calva A, Neri N, Cleto S and
Silva L: Role of radiotherapy in diffuse large B-cell lymphoma in
advanced stages on complete response after administration of
cyclophosphamide, doxorubicin, vincristine, prednisone, and
rituximab. Precision Radiation Oncol. 3:100–104. 2019. View Article : Google Scholar
|
6
|
Maziarz RT, Hao Y, Guerin A, Gauthier G,
Gauthierloiselle M, Thomas SK and Eldjerou L: Economic burden
following allogeneic hematopoietic stem cell transplant in patients
with diffuse large B-cell lymphoma. Leuk Lymphoma. 59:1133–1142.
2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Brudno JN and Kochenderfer JN: Chimeric
antigen receptor T-cell therapies for lymphoma. Nat Rev Clin Oncol.
15:31–46. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yang F, Zhang J, Zhang X, Tian M, Wang J,
Kang L, Qiu H and Wu D: Delayed remission following sequential
infusion of humanized CD19- and CD22-modified CAR-T cells in a
patient with relapsed/refractory acute lymphoblastic leukemia and
prior exposure to murine-derived CD19-directed CAR-T cells. Onco
Targets Ther. 12:2187–2191. 2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Dai H, Zhang W, Li X, Han Q, Guo Y, Zhang
Y, Wang Y, Wang C, Shi F, Zhang Y, et al: Tolerance and efficacy of
autologous or donor-derived T cells expressing CD19 chimeric
antigen receptors in adult B-ALL with extramedullary leukemia.
Oncoimmunology. 4:e10274692015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang N, Hu X, Cao W, Li C, Xiao Y, Cao Y,
Gu C, Zhang S, Chen L, Cheng J, et al: Efficacy and Safety of
CAR19/22 T-cell Cocktail therapy in patients with
Refractory/Relapsed B-cell Malignancies. Blood. 135:17–27. 2020.
View Article : Google Scholar : PubMed/NCBI
|
11
|
John M: Clinical immunotherapy of B-cell
malignancy using CD19-targeted CAR T-cells. Curr Gene Ther.
14:35–43. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Banihashemi SR, Hosseini AZ, Rahbarizadeh
F and Ahmadvand D: Development of Specific Nanobodies (VHH) for
CD19 Immuno-targeting of Human B-Lymphocytes. Iran J Basic Med Sci.
21:455–464. 2018.PubMed/NCBI
|
13
|
Locke FL, Neelapu SS, Bartlett NL, Siddiqi
T, Chavez JC, Hosing CM, Ghobadi A, Budde LE, Bot A, Rossi JM, et
al: Phase 1 results of ZUMA-1: A multicenter study of KTE-C19
Anti-CD19 CAR T cell therapy in refractory aggressive lymphoma. Mol
Ther. 25:285–295. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Chavez JC, Bachmeier C and Kharfan-Dabaja
MA: CAR T-cell therapy for B-cell lymphomas: Clinical trial results
of available products. Ther Adv Hematol. 10:20406207198415812019.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Kochenderfer JN, Somerville RPT, Lu T,
Yang JC, Sherry RM, Feldman SA, McIntyre L, Bot A, Rossi J, Lam N
and Rosenberg SA: Long-duration complete remissions of diffuse
large B-cell Lymphoma after Anti-CD19 chimeric antigen receptor
therapy. Mol Ther. 25:2245–2253. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Leonard JP, Coleman M, Ketas JC, Chadburn
A, Furman R, Schuster MW, Feldman EJ, Ashe M, Schuster SJ, Wegener
WA, et al: Epratuzumab, a Humanized Anti-CD22 antibody, in
aggressive Non-Hodgkin's lymphoma: Phase I/II clinical trial
results. Clin Cancer Res. 10:5327–5334. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Locke FL, Ghobadi A, Jacobson CA, Miklos
DB, Lekakis LJ, Oluwole OO, Lin Y, Braunschweig I, Hill BT,
Timmerman JM, et al: Long-term safety and activity of axicabtagene
ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A
single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 20:31–42.
2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kochenderfer JN, Dudley ME, Kassim SH,
Somerville RP, Carpenter RO, Stetler-Stevenson M, Yang JC, Phan GQ,
Hughes MS, Sherry RM, et al: Chemotherapy-refractory diffuse large
B-cell lymphoma and indolent B-cell malignancies Can Be effectively
treated with autologous T cells expressing an Anti-CD19 chimeric
antigen receptor. J Clin Oncol. 33:540–549. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Maude SL, Teachey DT, Porter DL and Grupp
SA: CD19-targeted chimeric antigen receptor T-cell therapy for
acute lymphoblastic leukemia. Blood. 125:4017–4023. 2015.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Maude SL, Barrett D, Teachey DT and Grupp
SA: Managing cytokine release syndrome associated with novel T
cell-engaging therapies. Cancer J. 20:119–122. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Meier JD and Grimmer JF: Evaluation and
Management of Neck Masses in Children. Am Fam Physician.
89:353–358. 2014.PubMed/NCBI
|
22
|
McCarten KM, Nadel HR, Shulkin BL and Cho
SY: Imaging for diagnosis, staging and response assessment of
Hodgkin lymphoma and non-Hodgkin lymphoma. Pediat Radiol.
49:1545–1564. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lee KC, Lee SH, Sung K, Ahn SH, Choi J,
Lee SH, Lee JH, Hong J and Park SH: A case of primary breast
diffuse large B-cell lymphoma treated with chemotherapy followed by
elective field radiation therapy: A brief treatment pattern review
from a radiation Oncologist's point of view. Case Rep Oncol Med.
2015:9079782015.PubMed/NCBI
|
24
|
Kahlon KS, Christine B, Cooper LJN, Andrew
R, Forman SJ and Jensen MC: Specific recognition and killing of
glioblastoma multiforme by interleukin 13-zetakine redirected
cytolytic T cells. Cancer Res. 64:9160–9166. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Debinski W and Thompson JP: Retargeting
interleukin 13 for radioimmunodetection and radioimmunotherapy of
human high-grade gliomas. Clin Cancer Res. 5 (10
Suppl):3143S–3147S. 1999.PubMed/NCBI
|
26
|
Porter D, Frey N, Wood PA, Weng Y and
Grupp SA: Grading of cytokine release syndrome associated with the
CAR T cell therapy tisagenlecleucel. J Hematol Oncol. 11:352018.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Kalos M, Levine BL, Porter DL, Katz S,
Grupp SA, Bagg A and June CH: T cells with chimeric antigen
receptors have potent antitumor effects and can establish memory in
patients with advanced leukemia. Sci Transl Med. 3:95ra732011.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Olson B, Li Y, Lin Y, Liu ET and Patnaik
A: Mouse models for cancer immunotherapy research. Cancer Discov.
8:1358–1365. 2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hill JA, Li D, Hay KA, Green ML, Cherian
S, Chen X, Riddell SR, Maloney DG, Boeckh M and Turtle CJ:
Infectious complications of CD19-targeted chimeric antigen
receptor-modified T cell immunotherapy. Blood. 131:121–130. 2018.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Chaouchi N, Vazquez A, Galanaud P and
Leprince C: B cell antigen receptor-mediated apoptosis. Importance
of accessory molecules CD19 and CD22 and of surface IgM
cross-linking. J Immunol. 154:3096–3104. 1995.PubMed/NCBI
|
32
|
Jurczak W, Zinzani PL, Gaidano G, Goy A,
Provencio M, Nagy Z, Robak T, Maddocks K, Buske C, Ambarkhane S, et
al: Phase IIa study of the CD19 antibody MOR208 in patients with
relapsed or refractory B-cell non-Hodgkin's lymphoma. Ann Onco.
29:1266–1272. 2018. View Article : Google Scholar
|
33
|
Park JH, Rivière I, Gonen M, Wang X,
Sénéchal B, Curran KJ, Sauter C, Wang Y, Santomasso B, Mead E, et
al: Long-term Follow-up of CD19 CAR therapy in acute lymphoblastic
leukemia. N Engl J Med. 378:449–459. 2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Schuster SJ, Svoboda J, Chong EA, Nasta
SD, Mato AR, Anak Ö, Brogdon JL, Pruteanu-Malinici I, Bhoj V,
Landsburg D, et al: Chimeric antigen receptor T cells in refractory
B-cell lymphomas. N Engl J Med. 377:2545–2554. 2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Turtle CJ, Hanafi LA, Berger C, Hudecek M,
Pender B, Robinson E, Hawkins R, Chaney C, Cherian S, Chen X, et
al: Immunotherapy of non-Hodgkin's lymphoma with a defined ratio of
CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T
cells. Sci Transl Med. 8:355ra1162016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kochenderfer JN, Somerville RPT, Lu T, Shi
V, Bot A, Rossi J, Xue A, Goff SL, Yang JC, Sherry RM, et al:
Lymphoma remissions caused by Anti-CD19 chimeric antigen receptor T
cells are associated with high serum Interleukin-15 levels. J Clin
Oncol. 35:1803–1813. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Lee DW, Kochenderfer JN, Stetlerstevenson
M, Cui YK, Delbrook C, Feldman SA, Fry TJ, Orentas R, Sabatino M,
Shah NN, et al: T cells expressing CD19 chimeric antigen receptors
for acute lymphoblastic leukaemia in children and young adults: A
phase 1 dose-escalation trial. Lancet. 385:517–528. 2015.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Sotillo E, Barrett DM, Black KL, Bagashev
A, Oldridge D, Wu G, Sussman R, Lanauze C, Ruella M, Gazzara MR, et
al: Convergence of acquired mutations and alternative splicing of
CD19 enables resistance to CART-19 immunotherapy. Cancer Discov.
5:1282–1295. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Park JH, Riviere I, Wang X, Bernal Y,
Purdon T, Halton E, Wang Y, Curran KJ, Sauter CS, Sadelain M and
Brentjens RJ: Implications of minimal residual disease negative
complete remission (MRD-CR) and allogeneic stem cell transplant on
safety and clinical outcome of CD19-targeted 19-28z CAR modified T
cells in adult patients with relapsed, refractory B-cell ALL.
Blood. 126:6822015. View Article : Google Scholar
|
40
|
Fry TJ, Shah NN, Orentas RJ,
Stetler-Stevenson M, Yuan CM, Ramakrishna S, Wolters P, Martin S,
Delbrook C, Yates B, et al: CD22-targeted CAR T cells induce
remission in B-ALL that is naive or resistant to CD19-targeted CAR
immunotherapy. Nat Med. 24:20–28. 2018. View Article : Google Scholar : PubMed/NCBI
|
41
|
Wei J, Zhu X, Mao X, Huang L, Meng F and
Zhou J: Severe early hepatitis B reactivation in a patient
receiving anti-CD19 and anti-CD22 CAR T cells for the treatment of
diffuse large B-cell lymphoma. J Immunother Cancer. 7:3152019.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Maude SL, Frey N, Shaw PA, Aplenc R,
Barrett DM, Bunin NJ, Chew A, Gonzalez VE, Zheng Z, Lacey SF, et
al: Chimeric antigen receptor T cells for sustained remissions in
leukemia. N Engl J Med. 371:1507–1517. 2014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Jiang H, Liu L, Guo T, Wu Y, Ai L, Deng J,
Dong J, Mei H and Hu Y: Improving the safety of CAR-T cell therapy
by controlling CRS-related coagulopathy. Ann Hematol. 98:1721–1732.
2019. View Article : Google Scholar : PubMed/NCBI
|
44
|
Liu Y, Chen X, Wang D, Li H, Huang J,
Zhang Z, Qiao Y, Zhang H, Zeng Y, Tang C, et al: Hemofiltration
successfully eliminates severe cytokine release syndrome following
CD19 CAR-T-Cell Therapy. J Immunother. 41:406–410. 2018. View Article : Google Scholar : PubMed/NCBI
|
45
|
Luo H, Wang N, Huang L, Zhou X, Jin J, Li
C, Wang D, Xu B, Xu J, Jiang L, et al: Inflammatory signatures for
quick diagnosis of life-threatening infection during the CAR T-cell
therapy. J Immunother Cancer. 7:2712019. View Article : Google Scholar : PubMed/NCBI
|
46
|
Chavez JC and Locke FL: CAR T cell therapy
for B-cell lymphomas. Best Pract Res Clin Haematol. 31:135–146.
2018. View Article : Google Scholar : PubMed/NCBI
|
47
|
Konstantinos AP and Maria TA: Systemic
consequences of intestinal inflammation. Bedside. 235–250.
2005.doi: 10.1007/0-387-25808-6_12.
|
48
|
Norelli M, Camisa B, Barbiera G, Falcone
L, Purevdorj A, Genua M, Sanvito F, Ponzoni M, Doglioni C,
Cristofori P, et al: Monocyte-derived IL-1 and IL-6 are
differentially required for cytokine-release syndrome and
neurotoxicity due to CAR T cells. Nat Med. 24:739–748. 2018.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Giavridis T, Stegen SJCVD, Eyquem J,
Hamieh M, Piersigilli A and Sadelain M: CAR T cell-induced cytokine
release syndrome is mediated by macrophages and abated by IL-1
blockade. Nat Med. 24:731–738. 2018. View Article : Google Scholar : PubMed/NCBI
|