1
|
Rajkumar SV, Dimopoulos MA, Palumbo A,
Blade J, Merlini G, Mateos MV, Kumar S, Hillengass J, Kastritis E,
Richardson P, et al: International Myeloma Working Group updated
criteria for the diagnosis of multiple myeloma. Lancet Oncol.
15:e538–e548. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ferlay J, Steliarova-Foucher E,
Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, Forman D and
Bray F: Cancer incidence and mortality patterns in Europe:
Estimates for 40 countries in 2012. Eur J Cancer. 49:1374–1403.
2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kumar SK, Dispenzieri A, Lacy MQ, Gertz
MA, Buadi FK, Pandey S, Kapoor P, Dingli D, Hayman SR, Leung N, et
al: Continued improvement in survival in multiple myeloma: Changes
in early mortality and outcomes in older patients. Leukemia.
28:1122–1128. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Mikkilineni L and Kochenderfer JN:
Chimeric antigen receptor T-cell therapies for multiple myeloma.
Blood. 130:2594–2602. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhang X, Yuan X, Shi H, Wu L, Qian H and
Xu W: Exosomes in cancer: Small particle, big player. J Hematol
Oncol. 8:832015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Yu S, Cao H, Shen B and Feng J:
Tumor-derived exosomes in cancer progression and treatment failure.
Oncotarget. 6:37151–37168. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Milane L, Singh A, Mattheolabakis G,
Suresh M and Amiji MM: Exosome mediated communication within the
tumor microenvironment. J Control Release. 219:278–294. 2015.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Yu S, Liu C, Su K, Wang J, Liu Y, Zhang L,
Li C, Cong Y, Kimberly R, Grizzle WE, et al: Tumor exosomes inhibit
differentiation of bone marrow dendritic cells. J Immunol.
178:6867–6875. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Clayton A, Mitchell JP, Court J, Mason MD
and Tabi Z: Human tumor-derived exosomes selectively impair
lymphocyte responses to interleukin-2. Cancer Res. 67:7458–7466.
2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Szajnik M, Czystowska M, Szczepanski MJ,
Mandapathil M and Whiteside TL: Tumor-derived microvesicles induce,
expand and up-regulate biological activities of human regulatory T
cells (Treg). PLoS One. 5:e114692010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chalmin F, Ladoire S, Mignot G, Vincent J,
Bruchard M, Remy-Martin JP, Boireau W, Rouleau A, Simon B, Lanneau
D, et al: Membrane-associated Hsp72 from tumor-derived exosomes
mediates STAT3-dependent immune suppressive function of mouse and
human myeloid-derived suppressor cells. J Clin Invest. 120:457–471.
2010.PubMed/NCBI
|
12
|
Xiang X, Poliakov A, Liu C, Liu Y, Deng
ZB, Wang J, Cheng Z, Shah SV, Wang GJ, Zhang L, et al: Induction of
myeloid-derived suppressor cells by tumor exosomes. Int J Cancer.
124:2621–2633. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Muller L, Mitsuhashi M, Simms P, Gooding
WE and Whiteside TL: Tumor-derived exosomes regulate expression of
immune function related genes in human T cell subsets. Sci Rep.
6:202542016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang J, De Veirman K, Faict S, Frassanito
MA, Ribatti D, Vacca A and Menu E: Multiple myeloma exosomes
establish a favourable bone marrow microenvironment with enhanced
angiogenesis and immunosuppression. J Pathol. 239:162–173. 2016.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Raimondi L, De Luca A, Amodio N, Manno M,
Raccosta S, Taverna S, Bellavia D, Naselli F, Fontana S, Schillaci
O, et al: Involvement of multiple myeloma cell-derived exosomes in
osteoclast differentiation. Oncotarget. 6:13772–13789. 2015.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Vignali DAA, Collison LW and Workman CJ:
How regulatory T cells work. Nat Rev Immunol. 8:523–532. 2008.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Andersen MH, Schrama D, Thor Straten P and
Becker JC: Cytotoxic T cells. J Invest Dermatol. 126:32–41. 2006.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Théry C, Amigorena S, Raposo G and Clayton
A: Isolation and characterization of exosomes from cell culture
supernatants and biological fluids. Curr Protoc Cell Biol Chapter.
3:Unit 3.22. 2006.
|
19
|
Wang J, Hendrix A, Hernot S, Lemaire M, De
Bruyne E, Van Valckenborgh E, Lahoutte T, De Wever O, Vanderkerken
K and Menu E: Bone marrow stromal cell-derived exosomes as
communicators in drug resistance in multiple myeloma cells. Blood.
124:555–566. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jung MK and Mun JY: Sample preparation and
imaging of exosomes by transmission electron microscopy. J Vis Exp.
131:564822018.
|
21
|
Quispe EÁ, Li XM and Yi H: Comparison and
relationship of thyroid hormones, IL-6, IL-10 and albumin as
mortality predictors in Case-mix critically ill patients. Cytokine.
81:94–100. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lobb RJ, Becker M, Wen SW, Wong CS,
Wiegmans AP, Leimgruber A and Möller A: Optimized exosome isolation
protocol for cell culture supernatant and human plasma. J Extracell
Vesicles. 4:270312015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Vojtech L, Woo S, Hughes S, Levy C,
Ballweber L, Sauteraud RP, Strobl J, Westerberg K, Gottardo R,
Tewari M and Hladik F: Exosomes in human semen carry a distinctive
repertoire of small non-coding RNAs with potential regulatory
functions. Nucleic Acids Res. 42:7290–7304. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Boyiadzis M and Whiteside TL: The emerging
roles of tumor-derived exosomes in hematological malignancies.
Leukemia. 31:1259–1268. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Whiteside TL: Immune responses to
malignancies. J Allergy Clin Immunol. 125 (Suppl):S272–S283. 2010.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Ludwig S, Floros T, Theodoraki MN, Hong
CS, Jackson EK, Lang S and Whiteside TL: Suppression of lymphocyte
functions by plasma exosomes correlates with disease activity in
patients with head and neck cancer. Clin Cancer Res. 23:4843–4854.
2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kim JW, Wieckowski E, Taylor DD, Reichert
TE, Watkins S and Whiteside TL: Fas ligand-positive membranous
vesicles isolated from sera of patients with oral cancer induce
apoptosis of activated T lymphocytes. Clin Cancer Res.
11:1010–1020. 2005.PubMed/NCBI
|
28
|
Wieckowski EU, Visus C, Szajnik M,
Szczepanski MJ, Storkus WJ and Whiteside TL: Tumor-derived
microvesicles promote regulatory T cell expansion and induce
apoptosis in tumor-reactive activated CD8+T lymphocytes. J Immunol.
183:3720–3730. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kim JW, Tsukishiro T, Johnson JT and
Whiteside TL: Expression of pro- and antiapoptotic proteins in
circulating CD8+ T cells of patients with squamous cell carcinoma
of the head and neck. Clin Cancer Res. 10:5101–5110. 2004.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Pardoll DM: The blockade of immune
checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264.
2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Tran TH, Mattheolabakis G, Aldawsari H and
Amiji M: Exosomes as nanocarriers for immunotherapy of cancer and
inflammatory diseases. Clin Immunol. 160:46–58. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ye SB, Li ZL, Luo DH, Huang BJ, Chen YS,
Zhang XS, Cui J, Zeng YX and Li J: Tumor-derived exosomes promote
tumor progression and T-cell dysfunction through the regulation of
enriched exosomal microRNAs in human nasopharyngeal carcinoma.
Oncotarget. 5:5439–5452. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Liu Y, Gu Y and Cao X: The exosomes in
tumor immunity. Oncoimmunology. 4:e10274722015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Mills KH and Cawley JC: Abnormal
monoclonal antibody defined helper/suppressor T-cell subpopulations
in multiple myeloma: Relationship to treatment and clinical stage.
Br J Haematol. 53:271–275. 1983. View Article : Google Scholar : PubMed/NCBI
|
35
|
Prabhala RH, Neri P, Bae JE, Tassone P,
Shammas MA, Allam CK, Daley JF, Chauhan D, Blanchard E, Thatte HS,
et al: Dysfunctional T regulatory cells in multiple myeloma. Blood.
107:301–304. 2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bryant C, Suen H, Brown R, Yang S,
Favaloro J, Aklilu E, Gibson J, Ho PJ, Iland H, Fromm P, et al:
Long-term survival in multiple myeloma is associated with a
distinct immunological profile, which includes proliferative
cytotoxic T-cell clones and a favourable Treg/Th17 balance. Blood
Cancer J. 3:e1482013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Beyer M, Kochanek M, Giese T, Endl E,
Weihrauch MR, Knolle PA, Classen S and Schultze JL: In vivo
peripheral expansion of naive CD4+CD25 high FoxP3+ regulatory T
cells in patients with multiple myeloma. Blood. 107:3940–3949.
2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Giannopoulos K, Kaminska W, Hus I and
Dmoszynska A: The frequency of T regulatory cells modulates the
survival of multiple myeloma patients: Detailed characterisation of
immune status in multiple myeloma. Br J Cancer. 106:546–552. 2012.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Feng P, Yan R, Dai X, Xie X, Wen H and
Yang S: The alteration and clinical significance of
Th1/Th2/Th17/Treg cells in patients with multiple myeloma.
Inflammation. 38:705–709. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Andre F, Schartz NE, Chaput N, Flament C,
Raposo G, Amigorena S, Angevin E and Zitvogel L: Tumor-derived
exosomes: A new source of tumor rejection antigens. Vaccine. 20
(Suppl 4):A28–A31. 2002. View Article : Google Scholar : PubMed/NCBI
|
41
|
Natasha G, Gundogan B, Tan A, Farhatnia Y,
Wu W, Rajadas J and Seifalian AM: Exosomes as immunotheranostic
nanoparticles. Clin Ther. 36:820–829. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Xie Y, Bai O, Zhang H, Li W and Xiang J:
Tumor necrosis factor gene-engineered J558 tumor cell-released
exosomes stimulate tumor antigen P1A-specifc CD8+ CTL
responses and antitumor immunity. Cancer Biother Radiopharm.
25:21–28. 2010. View Article : Google Scholar : PubMed/NCBI
|