Application of additive manufacturing in customized titanium mandibular implants for patients with oral tumors
- Authors:
- Yan Xia
- Zhi Chao Feng
- Changchun Li
- Heming Wu
- Chunbo Tang
- Lihua Wang
- Hongwei Li
-
Affiliations: Jiangsu Key Laboratory of Oral Disease, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China, Rutgers School of Dental Medicine, Rutgers University, Newark, NJ 07103, USA, Department of Stomatology, The Second Hospital of Nanjing, Nanjing, Jiangsu 210003, P.R. China, AK Medical Holdings Limited, Beijing 100101, P.R China - Published online on: July 27, 2020 https://doi.org/10.3892/ol.2020.11912
- Article Number: 51
-
Copyright: © Xia et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Jiménez M, Romero L, Domínguez I, Espinosa M and Domínguez M: Additive Manufacturing Technologies: An Overview about 3D Printing Methods and Future Prospects. Complexity. 2019:302019. View Article : Google Scholar | |
Berman B: 3-D printing: The new industrial revolution. Bussiness Horizons. 55:155–162. 2012. View Article : Google Scholar | |
Truscott M, Beer D, Vicatos G, Hosking K, Barnard L, Booysen G and Ian Campbell R: Using RP to promote collaborative design of customised medical implants. Rapid Prototyping J. 13:82007. View Article : Google Scholar | |
Khan SF and Dalgarno KW: Design of customised bioceramic medical implants by layered manufacturing. 2009. View Article : Google Scholar | |
Rodby KA, Turin S, Jacobs RJ, Cruz JF, Hassid VJ, Kolokythas A and Antony AK: Advances in oncologic head and neck reconstruction: Systematic review and future considerations of virtual surgical planning and computer aided design/computer aided modeling. J Plast Reconstr Aesthet Surg. 67:1171–1185. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU and Giesel FL: 3D printing based on imaging data: Review of medical applications. Int J Comput Assist Radiol Surg. 5:335–341. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tack P, Victor J, Gemmel P and Annemans L: 3D-printing techniques in a medical setting: A systematic literature review. Biomed Eng Online. 15:1152016. View Article : Google Scholar : PubMed/NCBI | |
Salmi M, Tuomi J, Paloheimo KS, Björkstrand R, Paloheimo M, Salo J, Kontio R, Mesimäki K and Mäkitie A: Patient-specific reconstruction with 3D modeling and DMLS additive manufacturing. Rapid Prototyp J. 18:209–214. 2012. View Article : Google Scholar | |
Philippe B: Custom-made prefabricated titanium miniplates in Le Fort I osteotomies: Principles, procedure and clinical insights. Int J Oral Maxillofac Surg. 42:1001–1006. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zeng C, Xing W, Wu Z, Huang H and Huang W: A combination of three-dimensional printing and computer-assisted virtual surgical procedure for preoperative planning of acetabular fracture reduction. Injury. 47:2223–2227. 2016. View Article : Google Scholar : PubMed/NCBI | |
Prochor P and Mierzejewska ZA: Influence of the surface roughness of PEEK GRF30 and Ti6Al4V SLM on the viability of primary human osteoblasts determined by the MTT Test. Materials (Basel). 12:41892019. View Article : Google Scholar | |
Vaezi M, Drescher P and Seitz H: Beamless metal additive manufacturing. Materials (Basel). 13:9222020. View Article : Google Scholar | |
Chen Q and Thouas GA: Metallic implant biomaterials. Materials Science Engineering. 87:1–57. 2015. View Article : Google Scholar | |
Vandenbroucke B and Kruth JP: Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J. 13:196–203. 2007. View Article : Google Scholar | |
Zhou C, Lei F, Chodosh J and Paschalis EI: The role of titanium surface microtopography on adhesion, proliferation, transformation, and matrix deposition of corneal cells. Invest Ophthalmol Vis Sci. 57:1927–1938. 2016. View Article : Google Scholar : PubMed/NCBI | |
Traini T, Mangano C, Sammons RL, Mangano F, Macchi A and Piattelli A: Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent Mater. 24:1525–1533. 2008. View Article : Google Scholar : PubMed/NCBI | |
Abdelrhman Y, Gepreel MA, Kobayashi S, Okano S and Okamoto T: Biocompatibility of new low-cost (α+β)-type Ti-Mo-Fe alloys for long-term implantation. Mater Sci Eng C Mater Biol Appl. 99:552–562. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ponader S, von Wilmowsky C, Widenmayer M, Lutz R, Heinl P, Körner C, Singer RF, Nkenke E, Neukam FW and Schlegel KA: In vivo performance of selective electron beam-melted Ti-6Al-4V structures. J Biomed Mater Res A. 92:56–62. 2010. View Article : Google Scholar : PubMed/NCBI | |
Parthasarathy J, Starly B, Raman S and Christensen A: Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J Mech Behav Biomed Mater. 3:249–259. 2010. View Article : Google Scholar : PubMed/NCBI | |
Murr LE, Amato KN, Li SJ, Tian YX, Cheng XY, Gaytan SM, Martinez E, Shindo PW, Medina F and Wicker RB: Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J Mech Behav Biomed Mater. 4:1396–1411. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cronskär M, Rännar LE and Bäckström M: Production of Customized Hip Stem Prostheses: A Comparison Between Machining and Additive Manufacturing. Rapid Prototyp J. 19:365–372. 2011. View Article : Google Scholar | |
Jardini AL, Larosa MA, Maciel Filho R, Zavaglia CA, Bernardes LF, Lambert CS, Calderoni DR and Kharmandayan P: Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing. J Craniomaxillofac Surg. 42:1877–1884. 2014. View Article : Google Scholar : PubMed/NCBI | |
Breeland G, Aktar A and Patel BC: Anatomy, Head and Neck, Mandible. In: StatPearls. (Treasure Island (FL)). 2020. | |
Zhang J, Liu M, Wang L, Chen S, Yuan P, Li J, Shen SG, Tang Z, Chen KC, Xia JJ and Shen D: Context-guided fully convolutional networks for joint craniomaxillofacial bone segmentation and landmark digitization. Med Image Anal. 60:1016212020. View Article : Google Scholar : PubMed/NCBI | |
Lee S, Choi D, Shim JH and Nam W: Efficacy of three-dimensionally printed polycaprolactone/beta tricalcium phosphate scaffold on mandibular reconstruction. Sci Rep. 10:49792020. View Article : Google Scholar : PubMed/NCBI | |
Alfotawi R and Ayoub A: Reconstruction of maxillofacial bone defects: Contemporary methods and future techniques. Am J Adv Med Sci. 2:18–27. 2014. | |
Ansari E, Chargi N, van Gemert JTM, van Es RJJ, Dieleman FJ, Rosenberg AJWP, Van Cann EM and de Bree R: Low skeletal muscle mass is a strong predictive factor for surgical complications and a prognostic factor in oral cancer patients undergoing mandibular reconstruction with a free fibula flap. Oral Oncol. 101:1045302020. View Article : Google Scholar : PubMed/NCBI | |
Mesgarzadeh AH, Abadi A and Keshani F: Seven-year follow-up of spontaneous bone regeneration following segmental mandibulectomy: Alternative option for mandibular reconstruction. Dent Res J (Isfahan). 16:435–440. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tatara AM, Koons GL, Watson E, Piepergerdes TC, Shah SR, Smith BT, Shum J, Melville JC, Hanna IA, Demian N, et al: Biomaterials-aided mandibular reconstruction using in vivo bioreactors. Proc Natl Acad Sci USA. 116:6954–6963. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Lin R, Wang X, Xue J, Deng C, Feng C, Zhuang H, Ma J, Qin C, Wan L, et al: 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration. Sci Adv. 6:eaaz67252020. View Article : Google Scholar : PubMed/NCBI | |
Tsukamoto Y, Akagi T and Akashi M: Vascularized cardiac tissue construction with orientation by layer-by-layer method and 3D printer. Sci Rep. 10:54842020. View Article : Google Scholar : PubMed/NCBI | |
Belaid H, Nagarajan S, Teyssier C, Barou C, Barés J, Balme S, Garay H, Huon V, Cornu D, Cavaillès V and Bechelany M: Development of new biocompatible 3D printed graphene oxide-based scaffolds. Mater Sci Eng C Mater Biol Appl. 110:1105952020. View Article : Google Scholar : PubMed/NCBI | |
Pacifici A, Polimeni A and Pacifici L: Additive manufacturing and biomimetic materials in oral and maxillofacial surgery: A topical overview. J Biol Regul Homeost Agents. 32:1579–1582. 2018.PubMed/NCBI | |
Rink B: Mandibular resection in cancer of the tongue and/or mouth floor. HNO. 39:224–226. 1991.(In German). PubMed/NCBI | |
Urken ML, Weinberg H, Vickery C, Buchbinder D, Lawson W and Biller HF: Oromandibular reconstruction using microvascular composite free flaps. Report of 71 cases and a new classification scheme for bony, soft-tissue, and neurologic defects. Arch Otolaryngol Head Neck Surg. 117:733–744. 1991. View Article : Google Scholar : PubMed/NCBI | |
Burgess J: Digital DICOM in dentistry. Open Dent J. 9:330–336. 2015. View Article : Google Scholar : PubMed/NCBI | |
Parthasarathy J: 3D modeling, custom implants and its future perspectives in craniofacial surgery. Ann Maxillofac Surg. 4:9–18. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wan Leung S, Lee TF, Chien CY, Chao PJ, Tsai WL and Fang FM: Health-related quality of life in 640 head and neck cancer survivors after radiotherapy using EORTC QLQ-C30 and QLQ-H&N35 questionnaires. BMC Cancer. 11:1282011. View Article : Google Scholar : PubMed/NCBI | |
Tschudi D, Stoeckli S and Schmid S: Quality of life after different treatment modalities for carcinoma of the oropharynx. Laryngoscope. 113:1949–1954. 2003. View Article : Google Scholar : PubMed/NCBI | |
Boyapati RP, Shah KC, Flood V and Stassen LF: Quality of life outcome measures using UW-QOL questionnaire v4 in early oral cancer/squamous cell cancer resections of the tongue and floor of mouth with reconstruction solely using local methods. Br J Oral Maxillofac Surg. 51:502–507. 2013. View Article : Google Scholar : PubMed/NCBI | |
Viana TSA, Silva PGB, Pereira KMA, Mota MRL, Alves APNN, de Souza EF and Sousa FB: Prospective evaluation of quality of life in patients undergoing primary surgery for oral cancer: Preoperative and postoperative analysis. Asian Pac J Cancer Prev. 18:2093–2100. 2017.PubMed/NCBI | |
Williamson A and Hoggart B: Pain: A review of three commonly used pain rating scales. J Clin Nurs. 14:798–804. 2005. View Article : Google Scholar : PubMed/NCBI | |
Dimitroulis G: Mandibular reconstruction following ablative tumour surgery: An overview of treatment planning. Aust N Z J Surg. 70:120–126. 2000. View Article : Google Scholar : PubMed/NCBI | |
Bak M, Jacobson AS, Buchbinder D and Urken ML: Contemporary reconstruction of the mandible. Oral Oncol. 46:71–76. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Rao P, Xia D, Sun L, Cai X and Xiao J: Functional reconstruction of mandibular segment defects with individual preformed reconstruction plate and computed tomographic angiography-aided iliac crest flap. J Oral Maxillofac Surg. 77:1293–1304. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kumar BP, Venkatesh V, Kumar KA, Yadav BY and Mohan SR: Mandibular Reconstruction: Overview. J Maxillofac Oral Surg. 15:425–441. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bowerman JE: A review of reconstruction of the mandible. Proc R Soc Med. 67:610–614. 1974.PubMed/NCBI | |
Gullane PJ and Holmes H: Mandibular reconstruction. New concepts. Arch Otolaryngol Head Neck Surg. 112:714–719. 1986. View Article : Google Scholar : PubMed/NCBI | |
Schusterman MA, Reece GP, Kroll SS and Weldon ME: Use of the AO plate for immediate mandibular reconstruction in cancer patients. Plast Reconstr Surg. 88:588–593. 1991. View Article : Google Scholar : PubMed/NCBI | |
Vuillemin T, Raveh J and Sutter F: Mandibular reconstruction with the titanium hollow screw reconstruction plate (THORP) system: evaluation of 62 cases. Plast Reconstr Surg. 82:804–814. 1988. View Article : Google Scholar : PubMed/NCBI | |
Liu YF, Xu LW, Zhu HY and Liu SS: Technical procedures for template-guided surgery for mandibular reconstruction based on digital design and manufacturing. Biomed Eng Online. 13:632014. View Article : Google Scholar : PubMed/NCBI | |
Wikesjo UM, Susin C, Qahash M, Polimeni G, Leknes KN, Shanaman RH, Prasad HS, Rohrer MD and Hall J: The critical-size supraalveolar peri-implant defect model: Characteristics and use. J Clin Periodontol. 33:846–854. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sadr-Eshkevari P, Rashad A, Vahdati SA, Garajei A, Bohluli B and Maurer P: Alloplastic mandibular reconstruction: A systematic review and meta-analysis of the current century case series. Plast Reconstr Surg. 132:413e–427e. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shibahara T, Noma H, Furuya Y and Takaki R: Fracture of mandibular reconstruction plates used after tumor resection. J Oral Maxillofac Surg. 60:182–185. 2002. View Article : Google Scholar : PubMed/NCBI | |
Gadre PK, Ramanojam S, Patankar A and Gadre KS: Nonvascularized bone grafting for mandibular reconstruction: Myth or reality? J Craniofac Surg. 22:1727–1735. 2011. View Article : Google Scholar : PubMed/NCBI | |
Handschel J, Hassanyar H, Depprich RA, Ommerborn MA, Sproll KC, Hofer M, Kübler NR and Naujoks C: Nonvascularized iliac bone grafts for mandibular reconstruction-requirements and limitations. In Vivo. 25:795–799. 2011.PubMed/NCBI | |
Warnke PH, Wiltfang J, Springer I, Acil Y, Bolte H, Kosmahl M, Russo PA, Sherry E, Lützen U, Wolfart S and Terheyden H: Man as living bioreactor: Fate of an exogenously prepared customized tissue-engineered mandible. Biomaterials. 27:3163–3167. 2006. View Article : Google Scholar : PubMed/NCBI | |
Moura LB, Carvalho PH, Xavier CB, Post LK, Torriani MA, Santagata M and Chagas Júnior OL: Autogenous non-vascularized bone graft in segmental mandibular reconstruction: A systematic review. Int J Oral Maxillofac Surg. 45:1388–1394. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mericli AF, Boukovalas S, Rhines LD, Adelman DM, Hanasono MM and Chang EI: Free Fibula Flap for Restoration of Spinal Stability after Oncologic Vertebrectomy Is Predictive of Bony Union. Plast Reconstr Surg. 145:219–229. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rao Janardhan S, Kotrashetti SM, Lingaraj JB, Pinto PX, Keluskar KM, Jain S, Sone P and Rao S: Anterior segmental distraction osteogenesis in the hypoplastic cleft maxilla: Report of five cases. Sultan Qaboos Univ Med J. 13:454–459. 2013.PubMed/NCBI | |
Wu V, Helder MN, Bravenboer N, Ten Bruggenkate CM, Jin J, Klein-Nulend J and Schulten EAJM: Bone tissue regeneration in the oral and maxillofacial region: A review on the application of stem cells and new strategies to improve vascularization. Stem Cells Int. 2019:62797212019. View Article : Google Scholar : PubMed/NCBI | |
Vidal L, Kampleitner C, Brennan MA, Hoornaert A and Layrolle P: Reconstruction of large skeletal defects: Current clinical therapeutic strategies and future directions using 3D Printing. Front Bioeng Biotechnol. 8:612020. View Article : Google Scholar : PubMed/NCBI | |
Wang MM, Flores RL, Witek L, Torroni A, Ibrahim A, Wang Z, Liss HA, Cronstein BN, Lopez CD, Maliha SG and Coelho PG: Dipyridamole-loaded 3D-printed bioceramic scaffolds stimulate pediatric bone regeneration in vivo without disruption of craniofacial growth through facial maturity. Sci Rep. 9:184392019. View Article : Google Scholar : PubMed/NCBI | |
Hidalgo DA: Fibula free flap: A new method of mandible reconstruction. Plast Reconstr Surg. 84:71–79. 1989. View Article : Google Scholar : PubMed/NCBI | |
Byun SH, Lim HK, Yang BE, Kim SM and Lee JH: Delayed reconstruction of palatomaxillary defect using fibula free flap. J Clin Med. 9:8842020. View Article : Google Scholar | |
Hashemi S, Oda M, Onoue K, Basa K, Rubin SJ, Sakai O, Salama A and Ezzat WH: Determining the optimal osteotomy distance with the fibula free flap in mandibular reconstruction. Am J Otolaryngol:. 41:1024362020. View Article : Google Scholar : PubMed/NCBI | |
Lonie S, Herle P, Paddle A, Pradhan N, Birch T and Shayan R: Mandibular reconstruction: Meta-analysis of iliac-versus fibula-free flaps. ANZ J Surg. 86:337–342. 2016. View Article : Google Scholar : PubMed/NCBI | |
Iamaguchi RB, de Moraes MA, Silva GB, Cho AB, Iwase FDC, Wei TH, de Rezende MR and Mattar R Jr: Is obesity a risk factor for free vascularized fibular flap complications? Acta Ortop Bras. 27:192–196. 2019. View Article : Google Scholar : PubMed/NCBI | |
Prevost R, Kimakhe J, Diep D, Drouet J, Benateau H and Veyssiere A: The significance of computer-assisted surgery in avoiding double-barrel fibula grafts in reconstruction of the horizontal mandibular ramus. J Stomatol Oral Maxillofac Surg. 120:167–171. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bartaire E, Mouawad F, Mallet Y, Milet P, El Bedoui S, Ton Van J, Chevalier D and Lefebvre JL: Morphologic assessment of mandibular reconstruction by free fibula flap and donor-site functional impairment in a series of 23 patients. Eur Ann Otorhinolaryngol Head Neck Dis. 129:230–237. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vedakumari WS, Ayaz N, Karthick AS, Senthil R and Sastry TP: Quercetin impregnated chitosan-fibrin composite scaffolds as potential wound dressing materials-Fabrication, characterization and in vivo analysis. Eur J Pharm Sci. 97:106–112. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao W, Li Y, Zhou A, Chen X, Li K, Chen S, Qiao B and Jiang D: Controlled release of basic fibroblast growth factor from a peptide biomaterial for bone regeneration. R Soc Open Sci. 7:1918302020. View Article : Google Scholar : PubMed/NCBI | |
Yuan X, Xuan M, Tian W and Long J: Application of digital surgical guides in mandibular resection and reconstruction with fibula flaps. Int J Oral Maxillofac Surg. 45:1406–1409. 2016. View Article : Google Scholar : PubMed/NCBI | |
Foley BD, Thayer WP, Honeybrook A, McKenna S and Press S: Mandibular reconstruction using computer-aided design and computer-aided manufacturing: An analysis of surgical results. J Oral Maxillofac Surg. 71:e111–e119. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pattanayak DK, Fukuda A, Matsushita T, Takemoto M, Fujibayashi S, Sasaki K, Nishida N, Nakamura T and Kokubo T: Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments. Acta Biomater. 7:1398–1406. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jia ZJ, Li M, Xiu P, Xu X, Cheng Y, Zheng Y, Xi T, Wei S and Liu Z: A novel cytocompatible, hierarchical porous Ti6Al4V scaffold with immobilized silver nanoparticles. Mater Lett. 157:143–146. 2015. View Article : Google Scholar | |
Bertollo N, Da Assuncao R, Hancock NJ, Lau A and Walsh WR: Influence of electron beam melting manufactured implants on ingrowth and shear strength in an ovine model. J Arthroplasty. 27:1429–1436. 2012. View Article : Google Scholar : PubMed/NCBI | |
Azuma M, Yanagawa T, Ishibashi-Kanno N, Uchida F, Ito T, Yamagata K, Hasegawa S, Sasaki K, Adachi K, Tabuchi K, Sekido M and Bukawa H: Mandibular reconstruction using plates prebent to fit rapid prototyping 3-dimensional printing models ameliorates contour deformity. Head Face Med. 10:452014. View Article : Google Scholar : PubMed/NCBI | |
Crafts TD, Ellsperman SE, Wannemuehler TJ, Bellicchi TD, Shipchandler TZ and Mantravadi AV: Three-dimensional printing and its applications in otorhinolaryngology-head and neck surgery. Otolaryngol Head Neck Surg. 156:999–1010. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sweed AH, Bolzoni AR, Kadubiec A, Beltramini GA, Cherchi A and Baj A: Factors influencing CAD/CAM accuracy in fibula free flap mandibular reconstruction. Acta Otorhinolaryngol Ital. 40:138–143. 2020. View Article : Google Scholar : PubMed/NCBI | |
Friedli L, Kloukos D, Kanavakis G, Halazonetis D and Gkantidis N: The effect of threshold level on bone segmentation of cranial base structures from CT and CBCT images. Sci Rep. 10:73612020. View Article : Google Scholar : PubMed/NCBI |