1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Burd EM: Human papillomavirus and cervical
cancer. Clin Microbiol Rev. 16:1–17. 2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Soto D, Song C and McLaughlin-Drubin ME:
Epigenetic alterations in human papillomavirus-associated cancers.
Viruses. 9:248–265. 2017. View
Article : Google Scholar
|
4
|
Willms A, Schittek H, Rahn S, Sosna J,
Mert U, Adam D and Trauzold A: Impact of p53 status on
TRAIL-mediated apoptotic and non-apoptotic signaling in cancer
cells. PLoS One. 14:e02148472019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wang S and El-Deiry WS: TRAIL and
apoptosis induction by TNF-family death receptors. Oncogene.
22:8628–8633. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhang L and Fang B: Mechanisms of
resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther.
12:228–2237. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Pitti RM, Marsters SA, Ruppert S, Donahue
CJ, Moore A and Ashkenazi A: Induction of apoptosis by Apo-2
ligand, a new member of the tumor necrosis factor cytokine family.
J Biol Chem. 271:12687–12690. 1996. View Article : Google Scholar : PubMed/NCBI
|
8
|
Poondla N, Chandrasekaran AP, Heese K, Kim
KS and Ramakrishna S: CRISPR-mediated upregulation of DR5 and
downregulation of cFLIP synergistically sensitize HeLa cells to
TRAIL-mediated apoptosis. Biochem Biophys Res Commun. 512:60–65.
2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Seo OW, Kim JH, Lee KS, Lee KS, Kim JH,
Won MH, Ha KS, Kwon YG and Kim YM: Kurarinone promotes
TRAIL-induced apoptosis by inhibiting NF-κB-dependent cFLIP
expression in HeLa cells. Exp Mol Med. 44:653–664. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yang A, Wilson NS and Ashkenazi A:
Proapoptotic DR4 and DR5 signaling in cancer cells: Toward clinical
translation. Curr Opin Cell Biol. 22:837–844. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Russo M, Mupo A, Spagnuolo C and Russo GL:
Exploring death receptor pathways as selective targets in cancer
therapy. Biochem Pharmacol. 80:674–682. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Malhi H and Gores GJ: TRAIL resistance
results in cancer progression: A TRAIL to perdition? Oncogene.
25:7333–7335. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Mobahat M, Narendran A and Riabowol K:
Survivin as a preferential target for cancer therapy. Int J Mol
Sci. 15:2494–2516. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Fukuda S and Pelus LM: Survivin, a cancer
target with an emerging role in normal adult tissues. Mol Cancer
Ther. 5:1087–1098. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Shin S, Sung BJ, Cho YS, Kim HJ, Ha NC,
Hwang JI, Chung CW, Jung JK and Oh BH: An Anti-apoptotic protein
human survivin is a direct inhibitor of caspase-3 and −7.
Biochemistry. 40:1117–1123. 2001. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lv YG, Yu F, Yao Q, Chen JH and Wang L:
The role of survivin in diagnosis, prognosis and treatment of
breast cancer. J Thorac Dis. 2:100–110. 2010.PubMed/NCBI
|
17
|
Cao XQ, Lu HS, Zhang L, Chen LL and Gan
MF: MEKK3 and survivin expression in cervical cancer: Association
with clinicopathological factors and prognosis. Asian Pacific J
Cancer Prev. 15:5271–5276. 2014. View Article : Google Scholar
|
18
|
Falleni M, Pellegrini C, Marchetti A,
Oprandi B, Buttitta F, Barassi F, Santambrogio L, Coggi G and
Bosari S: Survivin gene expression in early-stage non-small cell
lung cancer. J Pathol. 200:620–626. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Trieb K, Lehner R, Stulnig T, Sulzbacher I
and Shroyer KR: Survivin expression in human osteosarcoma is a
marker for survival. Eur J Surg Oncol. 29:379–82. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Park SH, Park SJ, Kim JO, Shin J-H, Kim
ES, Jo YK, Kim JS, Park SJ, Jin DH, Hwang JJ, et al:
Down-regulation of survivin by nemadipine-a sensitizes cancer cells
to TRAIL-induced apoptosis. Biomol Ther (Seoul). 21:29–34. 2013.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Hwang JS, Lee HC, Oh SC, Lee DH and Kwon
KH: Shogaol overcomes TRAIL resistance in colon cancer cells via
inhibiting of survivin. Tumor Biol. 36:8819–8829. 2015. View Article : Google Scholar
|
22
|
Véquaud E, Séveno C, Loussouarn D,
Engelhart L, Campone M, Juin P and Barillé-Nion S: YM155 potently
triggers cell death in breast cancer cells through an
autophagy-NF-kB network. Oncotarget. 6:13476–13486. 2015.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Cheng XJ, Lin JC, Ding YF, Zhu L, Ye J and
Tu SP: Survivin inhibitor YM155 suppresses gastric cancer xenograft
growth in mice without affecting normal tissues. Oncotarget.
7:7096–7109. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhang C, Cao x, Gei Y, Wang Y, Liu G,
Cheng G and Liu Q: Silencing of survivin by YM155 induces apoptosis
and growth arrest in hepatocellular carcinoma cells. Oncol Lett.
10:1627–1631. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhao X, Puszyk WM, Lu Z, Ostrov DA, George
TJ, Robertson KD and Liu C: Small molecule inhibitor YM155-mediated
activation of death receptor 5 is crucial for chemotherapy-induced
apoptosis in pancreatic carcinoma. Mol Cancer Ther. 14:80–89. 2015.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Jane EP, Premkumar DR, Sutera PA, Cavaleri
JM and Pollack IF: Survivin inhibitor YM155 induces mitochondrial
dysfunction, autophagy, DNA damage and apoptosis in Bcl-xL silenced
glioma cell lines. Mol Carcinog. 56:1251–1265. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Sim MY, Huynh H, Go ML and Yuen JSP:
Action of YM155 on clear cell renal cell carcinoma does not depend
on survivin expression levels. PLoS One. 12:e01781682017.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhao N, Mao Y, Han G, Ju Q, Zhou L, Liu F,
Xu Y and Zhao X: YM155, a survivin suppressant, triggers
PARP-dependent cell death (parthanatos) and inhibits esophageal
squamous-cell carcinoma xenografts in mice. Oncotarget.
6:18445–18459. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Li WL, Lee MR and Cho MY: The small
molecule survivin inhibitor YM155 may be an effective treatment
modality for colon cancer through increasing apoptosis. Biochem
Biophys Res Commun. 471:309–314. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Feng W, Yoshida A and Ueda T: YM155
induces caspase-8 dependent apoptosis through downregulation of
survivin and Mcl-1 in human leukemia cells. Biochem Biophys Res
Commun. 435:52–57. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Woo SM, Min K, Seo BR and Kwon TK: YM155
sensitizes TRAIL-induced apoptosis through cathepsin S-dependent
down-regulation of Mcl-1 and NF-κB-mediated down-regulation of
c-FLIP expression in human renal carcinoma Caki cells. Oncotarget.
7:61520–61532. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Azuhata T, Scott D, Griffith TS, Miller M
and Sandler AD: Survivin inhibits apoptosis induced by TRAIL, and
the ratio between survivin and TRAIL receptors is predictive of
recurrent disease in neuroblastoma. J Pediatr Surg. 41:1431–1440.
2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Latifi-Pupovci H, Kuçi Z, Wehner S, Bönig
H, Lieberz R, Klingebiel T, Bader P and Kuçi S: In vitro migration
and proliferation (‘wound healing’) potential of mesenchymal
stromal cells generated from human CD271+ bone marrow mononuclear
cells. J Transl Med. 13:315–323. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kuang AA, Diehl GE, Zhang J and Winoto A:
FADD is required for DR4- and DR5-mediated apoptosis. J Biol Chem.
275:25065–25068. 2000. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ponder KG and Boise LH: The prodomain of
caspase-3 regulates its own removal and caspase activation. Cell
Death Discov. 5:562019. View Article : Google Scholar : PubMed/NCBI
|
37
|
Salvesen GS: Caspases: Opening the boxes
and interpreting the arrows. Cell Death Differ. 9:3–5. 2002.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI
|
39
|
Maduro JH, de Vries EGE, Meersma GJ,
Hougardy BMT, van der Zee AGJ and de Jong S: Targeting
pro-apoptotic TRAIL receptors sensitizes HeLa cervical cancer cells
to irradiation-induced apoptosis. Int J Radiat Oncol Biol Phys.
72:543–552. 2008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Nakahara T, Kita A, Yamanaka K, Mori M,
Amino N, Takeuchi M, Tominaga F, Hatakeyama S, Kinoyama I,
Matsuhisa A, et al: YM155, a novel small-molecule survivin
suppressant, induces regression of established human
hormone-refractory prostate tumor xenografts. Cancer Res.
67:8014–8021. 2007. View Article : Google Scholar : PubMed/NCBI
|
41
|
Rauch A, Hennig D, Schäfer C, Wirth M,
Marx C, Heinzel T, Schneider G and Krämer OH: Survivin and YM155:
How faithful is the liaison? Biochim Biophys Acta. 1845:202–220.
2014.PubMed/NCBI
|
42
|
Kelly RJ, Thomas A, Rajan A, Chun G,
Lopez-Chavez A, Szabo E, Spencer S, Carter CA, Guha U, Khozin S, et
al: A phase I/II study of sepantronium bromide (YM155, survivin
suppressor) with paclitaxel and carboplatin in patients with
advanced non-small-cell lung cancer. Ann Oncol. 24:2601–2606. 2013.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Giaccone G, Zatloukal P, Roubec J, Floor
K, Musil J, Kuta M, van Klaveren RJ, Chaudhary R, Gunther A and
Shamsili S: Multicenter phase II trial of YM155, a small-molecule
suppressor of survivin, in patients with advanced, refractory,
non-small-cell lung cancer. J Clin Oncol. 27:4481–4486. 2009.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Pennati M, Sbarra S, Cesare MD, Lopergolo
A, Locatelli SL, Campi E, Daidone MG, Carlo-Stella C, Gianni AM and
Zaffaroni N: YM155 sensitizes triple-negative breast cancer to
membrane-bound TRAIL through p38 MAPK- and CHOP-mediated DR5
upregulation. Int J Cancer. 136:299–309. 2015. View Article : Google Scholar : PubMed/NCBI
|
45
|
Iwasa T, Okamoto I, Suzuki M, Nakahara T,
Satoh T, Fukuoka M, Ono K and Nakagawa K: Radiosensitizing effect
of YM155, a novel Small-molecule survivin suppressant, in Non-small
cell lung cancer cell lines. Clin Cancer Res. 14:6496–6504. 2008.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Hong M, Ren MQ, Silva J, Paul A, Wilson
WD, Schroeder C, Weinberger P, Janik J and Hao Z: YM155 inhibits
topoisomerase function. Anticancer Drugs. 28:142–152. 2017.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Nakamura H, Taguchi A, Kawana K, Baba S,
Kawata A, Yoshida M, Fujimoto A, Ogishima J, Sato M, Inoue T, et
al: Therapeutic significance of targeting survivin in cervical
cancer and possibility of combination therapy with TRAIL.
Oncotarget. 9:13451–13461. 2018. View Article : Google Scholar : PubMed/NCBI
|
48
|
Ryu AH, Eckalbar WL, Kreimer A, Yosef N
and Ahituv N: Use antibiotics in cell culture with caution:
Genome-wide identification of antibiotic-induced changes in gene
expression and regulation. Sci Rep. 7:75332017. View Article : Google Scholar : PubMed/NCBI
|
49
|
Winter GE, Radic B, Mayor-Ruiz C, Blomen
VA, Trefzer C, Kandasamy RK, Huber KVM, Gridling M, Chen D, Klampfl
T, et al: The solute carrier SLC35F2 enables YM155-mediated DNA
damage toxicity. Nat Chem Biol. 10:768–773. 2014. View Article : Google Scholar : PubMed/NCBI
|
50
|
Griffith T, Stokes B, Kucaba T, Earel J
Jr, van Oosten R, Brincks E and Norian L: TRAIL Gene therapy: From
preclinical development to clinical application. Curr Gene Ther.
9:9–19. 2009. View Article : Google Scholar : PubMed/NCBI
|
51
|
Yamanaka K, Nakahara T, Yamauchi T, Kita
A, Takeuchi M, Kiyonaga F, Kaneko N and Sasamata M: Antitumor
activity of YM155, a selective Small-molecule survivin suppressant,
alone and in combination with docetaxel in human malignant melanoma
models. Clin Cancer Res. 17:5423–5431. 2011. View Article : Google Scholar : PubMed/NCBI
|
52
|
Wiley SR, Schooley K, Smolak PJ, Din WS,
Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA,
et al: Identification and characterization of a new member of the
TNF family that induces apoptosis. Immunity. 3:673–682. 1995.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Kim K, Fisher MJ, Xu SQ and El-Deiry WS:
Molecular determinants of response to TRAIL in killing of normal
and cancer cells. Clin Cancer Res. 6:335–346. 2000.PubMed/NCBI
|
54
|
Kang Z, Sun SY and Cao L: Activating Death
receptor DR5 as a therapeutic strategy for rhabdomyosarcoma. ISRN
Oncol. 2012:3959522012.PubMed/NCBI
|
55
|
Day TW, Najafi F, Wu CH and Safa AR:
Cellular FLICE-like inhibitory protein (c-FLIP): A novel target for
Taxol-induced apoptosis. Biochem Pharmacol. 71:1551–1561. 2006.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Zong H, Yin B, Chen J, Ma B, Cai D and He
X: Over-Expression of c-FLIP confers the resistance to
TRAIL-induced apoptosis on gallbladder carcinoma. Tohoku J Exp Med.
217:203–208. 2009. View Article : Google Scholar : PubMed/NCBI
|
57
|
Surget S, Chiron D, Gomez-Bougie P,
Descamps G, Ménoret E, Bataille R, Moreau P, Gouill SL, Amiot M and
Pellat-Deceunynck C: Cell death via DR5, but not DR4, is regulated
by p53 in myeloma cells. Cancer Res. 72:4562–4573. 2012. View Article : Google Scholar : PubMed/NCBI
|
58
|
Chen S, Fu L, Raja SM, Yue P, Khuri FR and
Sun SY: Dissecting the roles of DR4, DR5 and c-FLIP in the
regulation of Geranylgeranyltransferase I inhibition-mediated
augmentation of TRAIL-induced apoptosis. Mol Cancer. 9:232010.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Refaat A, Abd-Rabou A and Reda A: TRAIL
combinations: The new ‘trail’ for cancer therapy (Review). Oncol
Lett. 7:1327–1332. 2014. View Article : Google Scholar : PubMed/NCBI
|
60
|
Gasparian ME, Chernyak BV, Dolgikh DA,
Yagolovich AV, Popova EN, Sycheva AM, Moshkovskii SA and
Kirpichnikov MP: Generation of new TRAIL mutants DR5-A and DR5-B
with improved selectivity to death receptor 5. Apoptosis.
14:778–787. 2009. View Article : Google Scholar : PubMed/NCBI
|
61
|
Kischkel FC, Lawrence DA, Chuntharapai A,
Schow P, Kim KJ and Ashkenazi A: Apo2L/TRAIL-dependent recruitment
of endogenous FADD and caspase-8 to death receptors 4 and 5.
Immunity. 12:611–620. 2000. View Article : Google Scholar : PubMed/NCBI
|
62
|
Thomas LR, Henson A, Reed JC, Salsbury FR
and Thorburn A: Direct binding of Fas-associated death domain
(FADD) to the tumor necrosis Factor-related Apoptosis-inducing
ligand receptor DR5 is regulated by the death effector domain of
FADD. J Biol Chem. 279:32780–32785. 2004. View Article : Google Scholar : PubMed/NCBI
|
63
|
Wang W, Wang S, Song X, Sima N, Xu X, Luo
A, Chen G, Deng D, Xu Q, Meng L, et al: The relationship between
c-FLIP expression and human papillomavirus E2 gene disruption in
cervical carcinogenesis. Gynecol Oncol. 105:571–577. 2007.
View Article : Google Scholar : PubMed/NCBI
|
64
|
Hu Z and Ma D: The precision prevention
and therapy of HPV-related cervical cancer: New concepts and
clinical implications. Cancer Med. 7:5217–5236. 2018. View Article : Google Scholar : PubMed/NCBI
|