1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Balkwill F and Mantovani A: Inflammation
and cancer: Back to virchow? Lancet. 357:539–545. 2001. View Article : Google Scholar : PubMed/NCBI
|
3
|
Eaden JA, Abrams KR and Mayberry JF: The
risk of colorectal cancer in ulcerative colitis: A meta-analysis.
Gut. 48:526–535. 2001. View Article : Google Scholar : PubMed/NCBI
|
4
|
Moldoveanu AC, Diculescu M and Braticevici
CF: Cytokines in inflammatory bowel disease. Rom J Intern Med.
53:118–127. 2015.PubMed/NCBI
|
5
|
Hemmi H, Takeuchi O, Kawai T, Kaisho T,
Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K and
Akira S: A toll-like receptor recognizes bacterial DNA. Nature.
408:740–745. 2000. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Krieg AM, Yi AK, Matson S, Waldschmidt TJ,
Bishop GA, Teasdale R, Koretzky GA and Klinman DM: CpG motifs in
bacterial DNA trigger direct B-cell activation. Nature.
374:546–549. 1995. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Kolumam GA, Thomas S, Thompson LJ, Sprent
J and Murali-Krishna K: Type I interferons act directly on CD8 T
cells to allow clonal expansion and memory formation in response to
viral infection. J Exp Med. 202:637–650. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Havenar-Daughton C, Kolumam GA and
Murali-Krishna K: Cutting Edge: The direct action of type I IFN on
CD4 T cells is critical for sustaining clonal expansion in response
to a viral but not a bacterial infection. J Immunol. 176:3315–3319.
2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Akira S and Takeda K: Toll-Like receptor
signaling. Nat Rev Immunol. 4:499–511. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sanchez-Munoz F, Fonseca-Camarillo G,
Villeda-Ramirez MA, Miranda-Pérez E, Mendivil EJ, Barreto-Zúñiga R,
Uribe M, Bojalil R, Domínguez-López A and Yamamoto-Furusho JK:
Transcript levels of toll-like receptors 5, 8 and 9 correlate with
inflammatory activity in ulcerative colitis. BMC Gastroenterol.
11:1382011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Fan Y and Liu B: Expression of Toll-Like
receptors in the mucosa of patients with ulcerative colitis. Exp
Ther Med. 9:1455–1459. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Eiro N, Gonzalez L, Gonzalez LO,
Andicoechea A, Fernández-Díaz M, Altadill A and Vizoso FJ: Study of
the expression of toll-like receptors in different histological
types of colorectal polyps and their relationship with colorectal
cancer. J Clin Immunol. 32:848–854. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Gao C, Qiao T, Zhang B, Yuan S, Zhuang X
and Luo Y: TLR9 signaling activation at different stages in
colorectal cancer and NF-kappaB expression. Onco Targets Ther.
11:5963–5971. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Nojiri K, Sugimoto K, Shiraki K, Tameda M,
Inagaki Y, Kusagawa S, Ogura S, Tanaka J, Yoneda M, Yamamoto N, et
al: The expression and function of Toll-like receptors 3 and 9 in
human colon carcinoma. Oncol Rep. 29:1737–1743. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Shahriari S, Rezaeifard S, Moghimi HR,
Khorramizadeh MR and Faghih Z: Cell membrane and intracellular
expression of toll-like receptor 9 (TLR9) in colorectal cancer and
breast cancer cell-lines. Cancer Biomark. 18:375–380. 2017.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Taniguchi K and Karin M: NF-κB,
inflammation, immunity and cancer: Coming of age. Nat Rev Immunol.
18:309–324. 2018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Capece D, Verzella D, Tessitore A, Alesse
E, Capalbo C and Zazzeroni F: Cancer secretome and inflammation:
The bright and the dark sides of NF-kappaB. Semin Cell Dev Biol.
78:51–61. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Said AH, Raufman JP and Xie G: The role of
matrix metalloproteinases in colorectal cancer. Cancers. 6:366–375.
2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Xue Q, Cao L, Chen XY, Zhao J, Gao L, Li
SZ and Fei Z: High expression of MMP9 in glioma affects cell
proliferation and is associated with patient survival rates. Oncol
Lett. 13:1325–1330. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ha SH, Kwon KM, Park JY, Abekura F, Lee
YC, Chung TW, Ha KT, Chang HW, Cho SH, Kim JK and Kim CH:
Esculentoside H inhibits colon cancer cell migration and growth
through suppression of MMP-9 gene expression via NF-kB signaling
pathway. J Cell Biochem. 120:9810–9819. 2019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Xu L, Wang C, Wen Z, Yao X, Liu Z, Li Q,
Wu Z, Xu Z, Liang Y and Ren T: Selective up-regulation of CDK2 is
critical for TLR9 signaling stimulated proliferation of human lung
cancer cell. Immunol Lett. 127:93–99. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Moreira D, Zhang Q, Hossain DM, Nechaev S,
Li H, Kowolik CM, D'Apuzzo M, Forman S, Jones J, Pal SK and
Kortylewski M: TLR9 signaling through NF-kappaB/RELA and STAT3
promotes tumor-propagating potential of prostate cancer cells.
Oncotarget. 6:17302–17313. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cai Y, Huang J, Xing H, Li B, Li L, Wang
X, Peng D and Chen J: Contribution of FPR and TLR9 to
hypoxia-induced chemoresistance of ovarian cancer cells. Onco
Targets Ther. 12:291–301. 2019. View Article : Google Scholar : PubMed/NCBI
|
24
|
Olbert PJ, Kesch C, Henrici M, Subtil FS,
Honacker A, Hegele A, Hofmann R and Hänze J: TLR4- and
TLR9-dependent effects on cytokines, cell viability, and invasion
in human bladder cancer cells. Urol Oncol. 33:e119–e127. 2015.
View Article : Google Scholar
|
25
|
Gao C, Kozlowska A, Nechaev S, Li H, Zhang
Q, Hossain DM, Kowolik CM, Chu P, Swiderski P, Diamond DJ, et al:
TLR9 signaling in the tumor microenvironment initiates cancer
recurrence after radiotherapy. Cancer Res. 73:7211–7221. 2013.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Tanaka T: Colorectal carcinogenesis:
Review of human and experimental animal studies. J Carcinog.
8:52009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zeng CY, Zhan YS, Huang J and Chen YX:
MicroRNA7 suppresses human colon cancer invasion and proliferation
by targeting the expression of focal adhesion kinase. Mol Med Rep.
13:1297–1303. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Tian Y, Xu Q, Sun L, Ye Y and Ji G:
Short-Chain fatty acids administration is protective in
colitis-associated colorectal cancer development. J Nutr Biochem.
57:103–109. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tian Y, Wang K, Wang Z, Li N and Ji G:
Chemopreventive effect of dietary glutamine on colitis-associated
colon tumorigenesis in mice. Carcinogenesis. 34:1593–1600. 2013.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Hudert CA, Weylandt KH, Lu Y, Wang J, Hong
S, Dignass A, Serhan CN and Kang JX: Transgenic mice rich in
endogenous omega-3 fatty acids are protected from colitis. Proc
Natl Acad Sci USA. 103:11276–11281. 2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Truelove SC and Richards WC: Biopsy
studies in ulcerative colitis. Br Med J. 9:1315–1318. 1956.
View Article : Google Scholar
|
32
|
Sangfelt P, Carlson M, Thörn M, Lööf L and
Raab Y: Neutrophil and eosinophil granule proteins as markers of
response to local prednisolone treatment in distal ulcerative
colitis and proctitis. Am J Gastroenterol. 96:1085–1090. 2001.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Zeng C, Wang Y, Lu Q, Chen J, Zhang J, Liu
T, Lv N and Luo S: SPOP suppresses tumorigenesis by regulating
Hedgehog/Gli2 signaling pathway in gastric cancer. J Exp Clin
Cancer Res. 33:752014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Scharl A, Vierbuchen M, Conradt B, Moll W,
Würz H and Bolte A: Immunohistochemical detection of progesterone
receptor in formalin-fixed and paraffin-embedded breast cancer
tissue using a monoclonal antibody. Arch Gynecol Obstet. 247:63–71.
1990. View Article : Google Scholar : PubMed/NCBI
|
35
|
Pan X, Zhou T, Tai YH, Wang C, Zhao J, Cao
Y, Chen Y, Zhang PJ, Yu M, Zhen C, et al: Elevated expression of
CUEDC2 protein confers endocrine resistance in breast cancer. Nat
Med. 17:708–714. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Remmele W and Stegner HE: Recommendation
for uniform definition of an immunoreactive score (IRS) for
immunohistochemical estrogen receptor detection (ER-ICA) in breast
cancer tissue. Pathologe. 8:138–140. 1987.PubMed/NCBI
|
37
|
Kinzler KW and Vogelstein B: Lessons from
hereditary colorectal cancer. Cell. 87:159–170. 1996. View Article : Google Scholar : PubMed/NCBI
|
38
|
Brenner H, Kloor M and Pox CP: Colorectal
cancer. Lancet. 383:1490–1502. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Beaugerie L and Itzkowitz SH: Cancers
complicating inflammatory bowel disease. N Engl J Med.
372:1441–1452. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Terzić J, Grivennikov S, Karin E and Karin
M: Inflammation and colon cancer. Gastroenterology. 138:2101–2114.
2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Itzkowitz SH and Yio X: Inflammation and
cancer IV. Colorectal cancer in inflammatory bowel disease: The
role of inflammation. Am J Physiol Gastrointest Liver Physiol.
287:G7–G17. 2004. View Article : Google Scholar : PubMed/NCBI
|
42
|
Akira S, Takeda K and Kaisho T: Toll-Like
receptors: Critical proteins linking innate and acquired immunity.
Nat Immunol. 2:675–680. 2001. View
Article : Google Scholar : PubMed/NCBI
|
43
|
Atreya R, Bloom S, Scaldaferri F, Gerardi
V, Admyre C, Karlsson Å, Knittel T, Kowalski J, Lukas M, Löfberg R,
et al: Clinical effects of a topically applied toll-like receptor 9
agonist in active moderate-to-severe ulcerative colitis. J Crohn's
Colitis. 10:1294–1302. 2016. View Article : Google Scholar
|
44
|
Schmoll HJ, Wittig B, Arnold D,
Riera-Knorrenschild J, Nitsche D, Kroening H, Mayer F, Andel J,
Ziebermayr R and Scheithauer W: Maintenance treatment with the
immunomodulator MGN1703, a Toll-like receptor 9 (TLR9) agonist, in
patients with metastatic colorectal carcinoma and disease control
after chemotherapy: A randomised, double-blind, placebo-controlled
trial. J Cancer Res Clin Oncol. 140:1615–1624. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Dong T, Yi T, Yang M, Lin S, Li W, Xu X,
Hu J, Jia L, Hong X and Niu W: Co-Operation of
alpha-galactosylceramide-loaded tumour cells and TLR9 agonists
induce potent anti-tumour responses in a murine colon cancer model.
Biochem J. 473:7–19. 2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Gemoll T, Kollbeck SL, Karstens KF, Hò GG,
Hartwig S, Strohkamp S, Schillo K, Thorns C, Oberländer M, Kalies
K, et al: EB1 protein alteration characterizes sporadic but not
ulcerative colitis associated colorectal cancer. Oncotarget.
8:54939–54950. 2017. View Article : Google Scholar : PubMed/NCBI
|
47
|
Soh JS, Jo SI, Lee H, Do EJ, Hwang SW,
Park SH, Ye BD, Byeon JS, Yang SK, Kim JH, et al: Immunoprofiling
of colitis-associated and sporadic colorectal cancer and its
clinical significance. Sci Rep. 9:68332019. View Article : Google Scholar : PubMed/NCBI
|
48
|
Kuznik A, Bencina M, Svajger U, Jeras M,
Rozman B and Jerala R: Mechanism of endosomal TLR inhibition by
antimalarial drugs and imidazoquinolines. J Immunol. 186:4794–4804.
2011. View Article : Google Scholar : PubMed/NCBI
|
49
|
Pascolo S: Time to use a dose of
chloroquine as an adjuvant to anti-cancer chemotherapies. Eur J
Pharmacol. 771:139–144. 2016. View Article : Google Scholar : PubMed/NCBI
|
50
|
Maes H, Kuchnio A, Carmeliet P and
Agostinis P: Chloroquine anticancer activity is mediated by
autophagy-independent effects on the tumor vasculature. Mol Cell
Oncol. 3:e9700972016. View Article : Google Scholar : PubMed/NCBI
|
51
|
Lin YC, Lin JF, Wen SI, Yang SC, Tsai TF,
Chen HE, Chou KY and Hwang TI: Chloroquine and hydroxychloroquine
inhibit bladder cancer cell growth by targeting basal autophagy and
enhancing apoptosis. Kaohsiung J Med Sci. 33:215–223. 2017.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Mohamed FE, Al-Jehani RM, Minogue SS,
Andreola F, Winstanley A, Damink SW, Habtesion A, Malagó M, Davies
N, Luong TV, et al: Effect of toll-like receptor 7 and 9 targeted
therapy to prevent the development of hepatocellular carcinoma.
Liver Int. 35:1063–1076. 2015. View Article : Google Scholar : PubMed/NCBI
|
53
|
Zhang Y, Li Y, Li Y, Ma Y, Wang H and Wang
Y: Chloroquine inhibits MGC803 gastric cancer cell migration via
the Toll-like receptor 9/nuclear factor kappa B signaling pathway.
Mol Med Rep. 11:1366–1371. 2015. View Article : Google Scholar : PubMed/NCBI
|