
ZBED1/DREF: A transcription factor that regulates cell proliferation (Review)
- Authors:
- Yarong Jin
- Ruilei Li
- Zhiwei Zhang
- Jinjin Ren
- Xin Song
- Gong Zhang
-
Affiliations: Department of Radiotherapy, People's Hospital of Shanxi Province, Taiyuan, Shanxi 030012, P.R. China, Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, P.R. China - Published online on: August 20, 2020 https://doi.org/10.3892/ol.2020.11997
- Article Number: 137
-
Copyright: © Jin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al: Initial sequencing and analysis of the human genome. Nature. 409:860–921. 2001. View Article : Google Scholar : PubMed/NCBI | |
Razin SV, Borunova VV, Maksimenko OG and Kantidze OL: Cys2His2 zinc finger protein family: Classification, functions, and major members. Biochemistry (Mosc). 77:217–226. 2012. View Article : Google Scholar : PubMed/NCBI | |
Markljung E, Jiang L, Jaffe JD, Mikkelsen TS, Wallerman O, Larhammar M, Zhang X, Wang L, Saenz-Vash V, Gnirke A, et al: ZBED6, a novel transcription factor derived from a domesticated DNA transposon regulates IGF2 expression and muscle growth. PLoS Biol. 7:e10002562009. View Article : Google Scholar : PubMed/NCBI | |
Akhtar Ali M, Younis S, Wallerman O, Gupta R, Andersson L and Sjöblom T: Transcriptional modulator ZBED6 affects cell cycle and growth of human colorectal cancer cells. Proc Natl Acad Sci USA. 112:7743–7748. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen T, Li M, Ding Y, Zhang LS, Xi Y, Pan WJ, Tao DL, Wang JY and Li L: Identification of zinc-finger BED domain-containing 3 (Zbed3) as a novel Axin-interacting protein that activates Wnt/beta-catenin signaling. J Biol Chem. 284:6683–6689. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fan C, Jiang G, Zhang X, Miao Y, Lin X, Luan L, Xu Z, Zhang Y, Zhao H, Liu D, et al: Zbed3 contributes to malignant phenotype of lung cancer via regulating β-catenin and P120-catenin 1. Mol Carcinog. 1 (54 Suppl):E138–E147. 2015. View Article : Google Scholar | |
Saghizadeh M, Akhmedov NB, Yamashita CK, Gribanova Y, Theendakara V, Mendoza E, Nelson SF, Ljubimov AV and Farber DB: ZBED4, a BED-type zinc-finger protein in the cones of the human retina. Invest Ophthalmol Vis Sci. 50:3580–3588. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mokhonov VV, Theendakara VP, Gribanova YE, Ahmedli NB and Farber DB: Sequence-specific binding of recombinant Zbed4 to DNA: Insights into Zbed4 participation in gene transcription and its association with other proteins. PLoS One. 7:e353172012. View Article : Google Scholar : PubMed/NCBI | |
Ohshima N, Takahashi M and Hirose F: Identification of a human homologue of the DREF transcription factor with a potential role in regulation of the histone H1 gene. J Biol Chem. 278:22928–22938. 2003. View Article : Google Scholar : PubMed/NCBI | |
Deininger PL and Batzer MA: Mammalian retroelements. Genome Res. 12:1455–1465. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sinzelle L, Izsvak Z and Ivics Z: Molecular domestication of transposable elements: From detrimental parasites to useful host genes. Cell Mol Life Sci. 66:1073–1093. 2009. View Article : Google Scholar : PubMed/NCBI | |
van de Lagemaat LN, Landry JR, Mager DL and Medstrand P: Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet. 19:530–536. 2003. View Article : Google Scholar : PubMed/NCBI | |
Jordan IK, Rogozin IB, Glazko GV and Koonin EV: Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet. 19:68–72. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kashkush K, Feldman M and Levy AA: Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet. 33:102–106. 2003. View Article : Google Scholar : PubMed/NCBI | |
Feschotte C and Pritham EJ: DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet. 41:331–368. 2007. View Article : Google Scholar : PubMed/NCBI | |
Volff JN: Turning junk into gold: Domestication of transposable elements and the creation of new genes in eukaryotes. Bioessays. 28:913–922. 2006. View Article : Google Scholar : PubMed/NCBI | |
Arensburger P, Hice RH, Zhou L, Smith RC, Tom AC, Wright JA, Knapp J, O'Brochta DA, Craig NL and Atkinson PW: Phylogenetic and functional characterization of the hAT transposon superfamily. Genetics. 188:45–57. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hayward A, Ghazal A, Andersson G, Andersson L and Jern P: ZBED evolution: Repeated utilization of DNA transposons as regulators of diverse host functions. PLoS One. 8:e599402013. View Article : Google Scholar : PubMed/NCBI | |
Hirose F, Yamaguchi M, Nishida Y, Masutani M, Miyazawa H, Hanaoka F and Matsukage A: Structure and expression during development of Drosophila melanogaster gene for DNA polymerase alpha. Nucleic Acids Res. 19:4991–4998. 1991. View Article : Google Scholar : PubMed/NCBI | |
Hirose F, Yamaguchi M, Handa H, Inomata Y and Matsukage A: Novel 8-base pair sequence (Drosophila DNA replication-related element) and specific binding factor involved in the expression of Drosophila genes for DNA polymerase alpha and proliferating cell nuclear antigen. J Biol Chem. 268:2092–2099. 1993.PubMed/NCBI | |
Hirose F, Yamaguchi M, Kuroda K, Omori A, Hachiya T, Ikeda M, Nishimoto Y and Matsukage A: Isolation and characterization of cDNA for DREF, a promoter-activating factor for Drosophila DNA replication-related genes. J Biol Chem. 271:3930–3937. 1996. View Article : Google Scholar : PubMed/NCBI | |
Takahashi Y, Hirose F, Matsukage A and Yamaguchi M: Identification of three conserved regions in the DREF transcription factors from Drosophila melanogaster and Drosophila virilis. Nucleic Acids Res. 27:510–516. 1999. View Article : Google Scholar : PubMed/NCBI | |
Smit AF: Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr Opin Genet Dev. 9:657–663. 1999. View Article : Google Scholar : PubMed/NCBI | |
Aravind L: The BED finger, a novel DNA-binding domain in chromatin-boundary-element-binding proteins and transposases. Trends Biochem Sci. 25:421–423. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hart CM, Cuvier O and Laemmli UK: Evidence for an antagonistic relationship between the boundary element-associated factor BEAF and the transcription factor DREF. Chromosoma. 108:375–383. 1999. View Article : Google Scholar : PubMed/NCBI | |
Yamashita D, Komori H, Higuchi Y, Yamaguchi T, Osumi T and Hirose F: Human DNA replication-related element binding factor (hDREF) self-association via hATC domain is necessary for its nuclear accumulation and DNA binding. J Biol Chem. 282:7563–7575. 2007. View Article : Google Scholar : PubMed/NCBI | |
Essers L, Adolphs RH and Kunze R: A highly conserved domain of the maize activator transposase is involved in dimerization. Plant Cell. 12:211–224. 2000. View Article : Google Scholar : PubMed/NCBI | |
Michel K, O'Brochta DA and Atkinson PW: The C-terminus of the Hermes transposase contains a protein multimerization domain. Insect Biochem Mol Biol. 33:959–970. 2003. View Article : Google Scholar : PubMed/NCBI | |
Matsukage A, Hirose F, Yoo MA and Yamaguchi M: The DRE/DREF transcriptional regulatory system: A master key for cell proliferation. Biochim Biophys Acta. 1779:81–89. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tue NT, Yoshioka Y, Mizoguchi M, Yoshida H, Zurita M and Yamaguchi M: DREF plays multiple roles during Drosophila development. Biochim Biophys Acta Gene Regul Mech. 1860:705–712. 2017. View Article : Google Scholar : PubMed/NCBI | |
Matsukage A, Hirose F, Hayashi Y, Hamada K and Yamaguchi M: The DRE sequence TATCGATA, a putative promoter-activating element for Drosophila melanogaster cell-proliferation-related genes. Gene. 166:233–236. 1995. View Article : Google Scholar : PubMed/NCBI | |
Sawado T, Hirose F, Takahashi Y, Sasaki T, Shinomiya T, Sakaguchi K, Matsukage A and Yamaguchi M: The DNA replication-related element (DRE)/DRE-binding factor system is a transcriptional regulator of the Drosophila E2F gene. J Biol Chem. 273:26042–26051. 1998. View Article : Google Scholar : PubMed/NCBI | |
Ohno K, Hirose F, Sakaguchi K, Nishida Y and Matsukage A: Transcriptional regulation of the Drosophila CycA gene by the DNA replication-related element (DRE) and DRE binding factor (DREF). Nucleic Acids Res. 24:3942–3946. 1996. View Article : Google Scholar : PubMed/NCBI | |
Takahashi Y, Yamaguchi M, Hirose F, Cotterill S, Kobayashi J, Miyajima S and Matsukage A: DNA replication-related elements cooperate to enhance promoter activity of the drosophila DNA polymerase alpha 73-kDa subunit gene. J Biol Chem. 271:14541–14547. 1996. View Article : Google Scholar : PubMed/NCBI | |
Ryu JR, Choi TY, Kwon EJ, Lee WH, Nishida Y, Hayashi Y, Matsukage A, Yamaguchi M and Yoo MA: Transcriptional regulation of the Drosophila-raf proto-oncogene by the DNA replication-related element (DRE)/DRE-binding factor (DREF) system. Nucleic Acids Res. 25:794–799. 1997. View Article : Google Scholar : PubMed/NCBI | |
Zabidi MA, Arnold CD, Schernhuber K, Pagani M, Rath M, Frank O and Stark A: Enhancer-core-promoter specificity separates developmental and housekeeping gene regulation. Nature. 518:556–559. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bird AP: CpG-rich islands and the function of DNA methylation. Nature. 321:209–213. 1986. View Article : Google Scholar : PubMed/NCBI | |
Argentaro A, Yang JC, Chapman L, Kowalczyk MS, Gibbons RJ, Higgs DR, Neuhaus D and Rhodes D: Structural consequences of disease-causing mutations in the ATRX-DNMT3-DNMT3L (ADD) domain of the chromatin-associated protein ATRX. Proc Natl Acad Sci USA. 104:11939–11944. 2007. View Article : Google Scholar : PubMed/NCBI | |
Valadez-Graham V, Yoshioka Y, Velazquez O, Kawamori A, Vazquez M, Neumann A, Yamaguchi M and Zurita M: XNP/dATRX interacts with DREF in the chromatin to regulate gene expression. Nucleic Acids Res. 40:1460–1474. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hart CM, Zhao K and Laemmli UK: The scs' boundary element: Characterization of boundary element-associated factors. Mol Cell Biol. 17:999–1009. 1997. View Article : Google Scholar : PubMed/NCBI | |
Royzman I, Whittaker AJ and Orr-Weaver TL: Mutations in Drosophila DP and E2F distinguish G1-S progression from an associated transcriptional program. Genes Dev. 11:1999–2011. 1997. View Article : Google Scholar : PubMed/NCBI | |
Brehm A, Langst G, Kehle J, Clapier CR, Imhof A, Eberharter A, Muller J and Becker PB: dMi-2 and ISWI chromatin remodelling factors have distinct nucleosome binding and mobilization properties. EMBO J. 19:4332–4341. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hirose F, Ohshima N, Kwon EJ, Yoshida H and Yamaguchi M: Drosophila Mi-2 negatively regulates dDREF by inhibiting its DNA-binding activity. Mol Cell Biol. 22:5182–5193. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ida H, Yoshida H, Nakamura K and Yamaguchi M: Identification of the Drosophila eIF4A gene as a target of the DREF transcription factor. Exp Cell Res. 313:4208–4220. 2007. View Article : Google Scholar : PubMed/NCBI | |
Linder P, Lasko PF, Ashburner M, Leroy P, Nielsen PJ, Nishi K, Schnier J and Slonimski PP: Birth of the D-E-A-D box. Nature. 337:121–122. 1989. View Article : Google Scholar : PubMed/NCBI | |
Blum S, Schmid SR, Pause A, Buser P, Linder P, Sonenberg N and Trachsel H: ATP hydrolysis by initiation factor 4A is required for translation initiation in Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 89:7664–7668. 1992. View Article : Google Scholar : PubMed/NCBI | |
Pestova TV, Kolupaeva VG, Lomakin IB, Pilipenko EV, Shatsky IN, Agol VI and Hellen CU: Molecular mechanisms of translation initiation in eukaryotes. Proc Natl Acad Sci USA. 98:7029–7036. 2001. View Article : Google Scholar : PubMed/NCBI | |
Pestova TV, Shatsky IN and Hellen CU: Functional dissection of eukaryotic initiation factor 4F: The 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes. Mol Cell Biol. 16:6870–6878. 1996. View Article : Google Scholar : PubMed/NCBI | |
Phuong Thao DT, Ida H, Yoshida H and Yamaguchi M: Identification of the Drosophila skpA gene as a novel target of the transcription factor DREF. Exp Cell Res. 312:3641–3650. 2006. View Article : Google Scholar : PubMed/NCBI | |
Seol JH, Shevchenko A, Shevchenko A and Deshaies RJ: Skp1 forms multiple protein complexes, including RAVE, a regulator of V-ATPase assembly. Nat Cell Biol. 3:384–391. 2001. View Article : Google Scholar : PubMed/NCBI | |
Tsuchiya A, Inoue YH, Ida H, Kawase Y, Okudaira K, Ohno K, Yoshida H and Yamaguchi M: Transcriptional regulation of the Drosophila rfc1 gene by the DRE-DREF pathway. FEBS J. 274:1818–1832. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sharkov NV, Ramsay G and Katzen AL: The DNA replication-related element-binding factor (DREF) is a transcriptional regulator of the Drosophila myb gene. Gene. 297:209–219. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nakamura K, Ida H and Yamaguchi M: Transcriptional regulation of the Drosophila moira and osa genes by the DREF pathway. Nucleic Acids Res. 36:3905–3915. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mohrmann L and Verrijzer CP: Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes. Biochim Biophys Acta. 1681:59–73. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bouazoune K and Brehm A: ATP-dependent chromatin remodeling complexes in Drosophila. Chromosome Res. 14:433–449. 2006. View Article : Google Scholar : PubMed/NCBI | |
He M, Zhou Z, Shah AA, Hong Y, Chen Q and Wan Y: New insights into posttranslational modifications of Hippo pathway in carcinogenesis and therapeutics. Cell Div. 11:42016. View Article : Google Scholar : PubMed/NCBI | |
Meng Z, Moroishi T and Guan KL: Mechanisms of Hippo pathway regulation. Genes Dev. 30:1–17. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ye S and Eisinger-Mathason TS: Targeting the Hippo pathway: Clinical implications and therapeutics. Pharmacol Res. 103:270–278. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vo N, Horii T, Yanai H, Yoshida H and Yamaguchi M: The Hippo pathway as a target of the Drosophila DRE/DREF transcriptional regulatory pathway. Sci Rep. 4:71962014. View Article : Google Scholar : PubMed/NCBI | |
Fujiwara S, Ida H, Yoshioka Y, Yoshida H and Yamaguchi M: The warts gene as a novel target of the Drosophila DRE/DREF transcription pathway. Am J Cancer Res. 2:36–44. 2012.PubMed/NCBI | |
Yanai H, Yoshioka Y, Yoshida H, Nakao Y, Plessis A and Yamaguchi M: Drosophila myeloid leukemia factor acts with DREF to activate the JNK signaling pathway. Oncogenesis. 3:e982014. View Article : Google Scholar : PubMed/NCBI | |
Yoshioka Y, Nguyen TT, Fujiwara S, Matsuda R, Valadez-Graham V, Zurita M and Yamaguchi M: Drosophila DREF acting via the JNK pathway is required for thorax development. Genesis. 50:599–611. 2012. View Article : Google Scholar : PubMed/NCBI | |
Trong-Tue N, Thao DT and Yamaguchi M: Role of DREF in transcriptional regulation of the Drosophila p53 gene. Oncogene. 29:2060–2069. 2010. View Article : Google Scholar : PubMed/NCBI | |
Brodsky MH, Nordstrom W, Tsang G, Kwan E, Rubin GM and Abrams JM: Drosophila p53 binds a damage response element at the reaper locus. Cell. 101:103–113. 2000. View Article : Google Scholar : PubMed/NCBI | |
Jin S, Martinek S, Joo WS, Wortman JR, Mirkovic N, Sali A, Yandell MD, Pavletich NP, Young MW and Levine AJ: Identification and characterization of a p53 homologue in Drosophila melanogaster. Proc Natl Acad Sci USA. 97:7301–7306. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ollmann M, Young LM, Di Como CJ, Karim F, Belvin M, Robertson S, Whittaker K, Demsky M, Fisher WW, Buchman A, et al: Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell. 101:91–101. 2000. View Article : Google Scholar : PubMed/NCBI | |
Nicolai S, Rossi A, Di Daniele N, Melino G, Annicchiarico-Petruzzelli M and Raschella G: DNA repair and aging: The impact of the p53 family. Aging (Albany NY). 7:1050–1065. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kim S and An SS: Role of p53 isoforms and aggregations in cancer. Medicine (Baltimore). 95:e39932016. View Article : Google Scholar : PubMed/NCBI | |
Chen J: The Cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb Perspect Med. 6:a0261042016. View Article : Google Scholar : PubMed/NCBI | |
Green DR and Evan GI: A matter of life and death. Cancer Cell. 1:19–30. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Huang J, Dong J and Pan D: hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell. 114:445–456. 2003. View Article : Google Scholar : PubMed/NCBI | |
Matsukage A, Hirose F and Yamaguchi M: Transcriptional regulation of DNA replication-related genes in cell growth, differentiation and oncogenesis. Jpn J Cancer Res. 85:1–8. 1994. View Article : Google Scholar : PubMed/NCBI | |
Doyle HJ, Kraut R and Levine M: Spatial regulation of zerknullt: A dorsal-ventral patterning gene in Drosophila. Genes Dev. 3:1518–1533. 1989. View Article : Google Scholar : PubMed/NCBI | |
Hirose F, Yamaguchi M and Matsukage A: Repression of regulatory factor for Drosophila DNA replication-related gene promoters by zerknullt homeodomain protein. J Biol Chem. 269:2937–2942. 1994.PubMed/NCBI | |
Hayashi Y, Kato M, Seto H and Yamaguchi M: Drosophila distal-less negatively regulates dDREF by inhibiting its DNA binding activity. Biochim Biophys Acta. 1759:359–366. 2006. View Article : Google Scholar : PubMed/NCBI | |
Seto H, Hayashi Y, Kwon E, Taguchi O and Yamaguchi M: Antagonistic regulation of the Drosophila PCNA gene promoter by DREF and Cut. Genes Cells. 11:499–512. 2006. View Article : Google Scholar : PubMed/NCBI | |
van Wijnen AJ, Wright KL, Massung RF, Gerretsen M, Stein JL and Stein GS: Two target sites for protein binding in the promoter region of a cell cycle regulated human H1 histone gene. Nucleic Acids Res. 16:571–592. 1988. View Article : Google Scholar : PubMed/NCBI | |
Albig W, Meergans T and Doenecke D: Characterization of the H1.5 gene completes the set of human H1 subtype genes. Gene. 184:141–148. 1997. View Article : Google Scholar : PubMed/NCBI | |
Yamashita D, Sano Y, Adachi Y, Okamoto Y, Osada H, Takahashi T, Yamaguchi T, Osumi T and Hirose F: hDREF regulates cell proliferation and expression of ribosomal protein genes. Mol Cell Biol. 27:2003–2013. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yamashita D, Moriuchi T, Osumi T and Hirose F: Transcription Factor hDREF Is a Novel SUMO E3 Ligase of Mi2α. J Biol Chem. 291:11619–11634. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jiang S, Wang Y, Xiong Y, Feng Y, Tang J and Song R: High expression of ZBED1 affects proliferation and apoptosis in gastric cancer. Int J Clin Exp Pathol. 11:4019–4025. 2018.PubMed/NCBI |