Biomarkers of immunotherapy in non‑small cell lung cancer (Review)
- Authors:
- Lingling Wang
- Yue Hu
- Shengchao Wang
- Jiali Shen
- Xiaochen Wang
-
Affiliations: Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China, Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China, Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China - Published online on: August 20, 2020 https://doi.org/10.3892/ol.2020.11999
- Article Number: 139
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI | |
Osmani L, Askin F, Gabrielson E and Li QK: Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (NSCLC): Moving from targeted therapy to immunotherapy. Semin Cancer Biol. 52:103–109. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gettinger S, Horn L, Jackman D, Spigel D, Antonia S, Hellmann M, Powderly J, Heist R, Sequist LV, Smith DC, et al: Five-year follow-up of nivolumab in previously treated advanced non-small-cell lung cancer: Results from the CA209-003 study. J Clin Oncol. 36:1675–1684. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kelly K, Crowley J, Bunn PA Jr, Presant CA, Grevstad PK, Moinpour CM, Ramsey SD, Wozniak AJ, Weiss GR, Moore DF, et al: Randomized phase III trial of paclitaxel plus carboplatin versus vinorelbine plus cisplatin in the treatment of patients with advanced non-small-cell lung cancer: A Southwest oncology group trial. J Clin Oncol. 19:3210–3218. 2001. View Article : Google Scholar : PubMed/NCBI | |
Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, Zhu J and Johnson DH; Eastern Cooperative Oncology Group, : Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med. 346:92–98. 2002. View Article : Google Scholar : PubMed/NCBI | |
McNutt M: Cancer immunotherapy. Science. 342:14172013. View Article : Google Scholar : PubMed/NCBI | |
Pardoll DM: The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zago G, Muller M, van den Heuvel M and Baas P: New targeted treatments for non-small-cell lung cancer-role of nivolumab. Biologics. 10:103–117. 2016.PubMed/NCBI | |
Camidge DR, Doebele RC and Kerr KM: Comparing and contrasting predictive biomarkers for immunotherapy and targeted therapy of NSCLC. Nat Rev Clin Oncol. 16:341–355. 2019. View Article : Google Scholar : PubMed/NCBI | |
Suresh K, Naidoo J, Lin CT and Danoff S: Immune checkpoint immunotherapy for non-small cell lung cancer: Benefits and pulmonary toxicities. Chest. 154:1416–1423. 2018. View Article : Google Scholar : PubMed/NCBI | |
Santini FC, Rizvi H, Plodkowski AJ, Ni A, Lacouture ME, Gambarin-Gelwan M, Wilkins O, Panora E, Halpenny DF, Long NM, et al: Safety and efficacy of re-treating with immunotherapy after immune-related adverse events in patients with NSCLC. Cancer Immunol Res. 6:1093–1099. 2018. View Article : Google Scholar : PubMed/NCBI | |
Di Giacomo AM, Danielli R, Guidoboni M, Calabrò L, Carlucci D, Miracco C, Volterrani L, Mazzei MA, Biagioli M, Altomonte M and Maio M: Therapeutic efficacy of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with metastatic melanoma unresponsive to prior systemic treatments: Clinical and immunological evidence from three patient cases. Cancer Immunol Immunother. 58:1297–1306. 2009. View Article : Google Scholar : PubMed/NCBI | |
Champiat S, Dercle L, Ammari S, Massard C, Hollebecque A, Postel-Vinay S, Chaput N, Eggermont A, Marabelle A, Soria JC and Ferté C: Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin Cancer Res. 23:1920–1928. 2017. View Article : Google Scholar : PubMed/NCBI | |
Herbst RS, Baas P, Kim DW, Felip E, Pérez-Gracia JL, Han JY, Molina J, Kim JH, Arvis CD, Ahn MJ, et al: Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet. 387:1540–1550. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xia L, Liu Y and Wang Y: PD-1/PD-L1 blockade therapy in advanced non-small-cell lung cancer: Current status and future directions. Oncologist. 24 (Suppl 1):S31–S41. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang Y: Cancer immunotherapy: Harnessing the immune system to battle cancer. J Clin Invest. 125:3335–3337. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Liu J, He Y and McLeod HL: Prospect for immune checkpoint blockade: Dynamic and comprehensive monitorings pave the way. Pharmacogenomics. 18:1299–1304. 2017. View Article : Google Scholar : PubMed/NCBI | |
Almand B and Carbone DP: Biological considerations in lung cancer. Cancer Treat Res. 105:1–30. 2001. View Article : Google Scholar : PubMed/NCBI | |
Assi HI, Kamphorst AO, Moukalled NM and Ramalingam SS: Immune checkpoint inhibitors in advanced non-small cell lung cancer. Cancer. 124:248–261. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen L and Flies DB: Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 13:227–242. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schildberg FA, Klein SR, Freeman GJ and Sharpe AH: Coinhibitory pathways in the B7-CD28 ligand-receptor family. Immunity. 44:955–972. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rowshanravan B, Halliday N and Sansom DM: CTLA-4: A moving target in immunotherapy. Blood. 131:58–67. 2018. View Article : Google Scholar : PubMed/NCBI | |
Arce Vargas F, Furness AJS, Litchfield K, Joshi K, Rosenthal R, Ghorani E, Solomon I, Lesko MH, Ruef N, Roddie C, et al: Fc effector function contributes to the activity of human anti-CTLA-4 antibodies. Cancer Cell. 33:649–663.e4. 2018. View Article : Google Scholar : PubMed/NCBI | |
Walker LS: Treg and CTLA-4: Two intertwining pathways to immune tolerance. J Autoimmun. 45:49–57. 2013. View Article : Google Scholar : PubMed/NCBI | |
Corrales L, Scilla K, Caglevic C, Miller K, Oliveira J and Rolfo C: Immunotherapy in lung cancer: A new age in cancer treatment. Adv Exp Med Biol. 995:65–95. 2018. View Article : Google Scholar : PubMed/NCBI | |
Govindan R, Szczesna A, Ahn MJ, Schneider CP, Gonzalez Mella PF, Barlesi F, Han B, Ganea DE, Von Pawel J, Vladimirov V, et al: Phase III trial of ipilimumab combined with paclitaxel and carboplatin in advanced squamous non-small-cell lung cancer. J Clin Oncol. 35:3449–3457. 2017. View Article : Google Scholar : PubMed/NCBI | |
Boussiotis VA, Chatterjee P and Li L: Biochemical signaling of PD-1 on T cells and its functional implications. Cancer J. 20:265–271. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Teng F, Kong L and Yu J: PD-L1 expression in human cancers and its association with clinical outcomes. Onco Targets Ther. 9:5023–5039. 2016. View Article : Google Scholar : PubMed/NCBI | |
Machicote A, Belén S, Baz P, Billordo LA and Fainboim L: Human CD8+HLA-DR+ regulatory T cells, similarly to classical CD4+Foxp3+ cells, suppress immune responses via PD-1/PD-L1 axis. Front Immunol. 9:27882018. View Article : Google Scholar : PubMed/NCBI | |
Ventriglia J, Paciolla I, Pisano C, Cecere SC, Di Napoli M, Tambaro R, Califano D, Losito S, Scognamiglio G, Setola SV, et al: Immunotherapy in ovarian, endometrial and cervical cancer: State of the art and future perspectives. Cancer Treat Rev. 59:109–116. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yahata T, Mizoguchi M, Kimura A, Orimo T, Toujima S, Kuninaka Y, Nosaka M, Ishida Y, Sasaki I, Fukuda-Ohta Y, et al: Programmed cell death ligand 1 disruption by clustered regularly interspaced short palindromic repeats/Cas9-genome editing promotes antitumor immunity and suppresses ovarian cancer progression. Cancer Sci. 110:1279–1292. 2019. View Article : Google Scholar : PubMed/NCBI | |
Boussiotis VA: Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med. 375:1767–1778. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gajewski TF, Schreiber H and Fu YX: Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 14:1014–1022. 2013. View Article : Google Scholar : PubMed/NCBI | |
Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT and Gajewski TF: Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med. 5:200ra1162013. View Article : Google Scholar : PubMed/NCBI | |
Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, Gadgeel SM, Hida T, Kowalski DM, Dols MC, et al: Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet. 389:255–265. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vokes EE, Ready N, Felip E, Horn L, Burgio MA, Antonia SJ, Arén Frontera O, Gettinger S, Holgado E, Spigel D, et al: Nivolumab versus docetaxel in previously treated advanced non-small-cell lung cancer (CheckMate 017 and CheckMate 057): 3-Year update and outcomes in patients with liver metastases. Ann Oncol. 29:959–965. 2018. View Article : Google Scholar : PubMed/NCBI | |
Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, Gottfried M, Peled N, Tafreshi A, Cuffe S, et al: Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 375:1823–1833. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nosaki K, Saka H, Hosomi Y, Baas P, de Castro G Jr, Reck M, Wu YL, Brahmer JR, Felip E, Sawada T, et al: Safety and efficacy of pembrolizumab monotherapy in elderly patients with PD-L1-positive advanced non-small-cell lung cancer: Pooled analysis from the KEYNOTE-010, KEYNOTE-024, and KEYNOTE-042 studies. Lung Cancer. 135:188–195. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lopes G, Wu YL, Kudaba I, Kowalski D, Cho BC, Bondarenko I, Kubota K, Lubiniecki GM, Zhang J, Kush DA and Mok T: Pembrolizumab (pembro) versus platinum-based chemotherapy (chemo) as first-line therapy for advanced/metastatic NSCLC with a PD-L1 tumor proportion score (TPS) >= 1%: Open-label, phase 3 KEYNOTE-042 study. J Clin Oncol. 36 (18 Suppl):LBA4. 2018. View Article : Google Scholar | |
Mok TSK, Wu YL, Kudaba I, Kowalsk DM, Cho BC, Turna HZ, de Castro G Jr, Srimuninnimit V, Laktionov KK, Bondarenko I, et al: Final analysis of the phase III KEYNOTE-042 study: Pembrolizumab (Pembro) versus platinum-based chemotherapy (Chemo) as first-line therapy for patients (Pts) with PD-L1-positive locally advanced/metastatic NSCLC. Ann Oncol. 30 (Suppl 2):ii38–ii68. 2019. View Article : Google Scholar | |
Oezkan F, He K, Owen D, Pietrzak M, Cho Jh, Kitzler R, Pearson R, Rusch V, Chaft J, Suh R, et al: OA13.07 Neoadjuvant atezolizumab in resectable NSCLC patients: Immunophenotyping results from the interim analysis of the multicenter trial LCMC3. J Thorac Oncol. 14 (10 Suppl):S242–S243. 2019. View Article : Google Scholar | |
Gandhi L, Rodriguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, Domine M, Clingan P, Hochmair MJ, Powell SF, et al: Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 378:2078–2092. 2018. View Article : Google Scholar : PubMed/NCBI | |
West H, McCleod M, Hussein M, Morabito A, Rittmeyer A, Conter HJ, Kopp HG, Daniel D, McCune S, Mekhail T, et al: Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 20:924–937. 2019. View Article : Google Scholar : PubMed/NCBI | |
Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Kurata T, Chiappori A, Lee KH, de Wit M, et al: Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med. 379:2342–2350. 2018. View Article : Google Scholar : PubMed/NCBI | |
Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, Rodríguez-Abreu D, Moro-Sibilot D, Thomas CA, Barlesi F, et al: Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 378:2288–2301. 2018. View Article : Google Scholar : PubMed/NCBI | |
Buchbinder EI and Desai A: CTLA-4 and PD-1 pathways: Similarities, differences, and implications of their inhibition. Am J Clin Oncol. 39:98–106. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang NAS, Andrews MC, Sharma P, Wang J, Wargo JA, Pe'er D and Allison JP: Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell. 170:1120–1133.e17. 2017. View Article : Google Scholar : PubMed/NCBI | |
Curran MA, Montalvo W, Yagita H and Allison JP: PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA. 107:4275–4280. 2010. View Article : Google Scholar : PubMed/NCBI | |
Das R, Verma R, Sznol M, Boddupalli CS, Gettinger SN, Kluger H, Callahan M, Wolchok JD, Halaban R, Dhodapkar MV and Dhodapkar KM: Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo. J Immunol. 194:950–959. 2015. View Article : Google Scholar : PubMed/NCBI | |
Reck M, Schenker M, Lee KH, Provencio M, Nishio M, Lesniewski-Kmak K, Sangha R, Ahmed S, Raimbourg J, Feeney K, et al: Nivolumab plus ipilimumab versus chemotherapy as first-line treatment in advanced non-small-cell lung cancer with high tumour mutational burden: Patient-reported outcomes results from the randomised, open-label, phase III CheckMate 227 trial. Eur J Cancer. 116:137–147. 2019. View Article : Google Scholar : PubMed/NCBI | |
Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, et al: Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 373:1627–1639. 2015. View Article : Google Scholar : PubMed/NCBI | |
Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, et al: Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. New Engl J Med. 373:123–135. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, Park K, Smith D, Artal-Cortes A, Lewanski C, et al: Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. Lancet. 387:1837–1846. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Zeng D, Ou Q, Liu S, Li A, Chen Y, Lin D, Gao Q, Zhou H, Liao W and Yao H: Association of survival and immune-related biomarkers with immunotherapy in patients with non-small cell lung cancer: A meta-analysis and individual patient-level analysis. JAMA Netw Open. 2:e1968792019. View Article : Google Scholar : PubMed/NCBI | |
Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A and Peters S: Development of tumor mutation burden as an immunotherapy biomarker: Utility for the oncology clinic. Ann Oncol. 30:44–56. 2019. View Article : Google Scholar : PubMed/NCBI | |
Salmaninejad A, Valilou SF, Shabgah AG, Aslani S, Alimardani M, Pasdar A and Sahebkar A: PD-1/PD-L1 pathway: Basic biology and role in cancer immunotherapy. J Cell Physiol. 234:16824–16837. 2019. View Article : Google Scholar : PubMed/NCBI | |
Patel SP and Kurzrock R: PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther. 14:847–856. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gibney GT, Weiner LM and Atkins MB: Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 17:e542–e551. 2016. View Article : Google Scholar : PubMed/NCBI | |
Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, Felip E, van den Heuvel MM, Ciuleanu TE, Badin F, et al: First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. New Engl J Med. 376:2415–2426. 2017. View Article : Google Scholar : PubMed/NCBI | |
Garon EB, Rizvi NA, Hui RN, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, et al: Pembrolizumab for the treatment of non-small-cell lung cancer. New Engl J Med. 372:2018–2028. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fumet JD, Truntzer C, Yarchoan M and Ghiringhelli F: Tumour mutational burden as a biomarker for immunotherapy: Current data and emerging concepts. Eur J Cancer. 131:40–50. 2020. View Article : Google Scholar : PubMed/NCBI | |
Johnson DB, Frampton GM, Rioth MJ, Yusko E, Xu Y, Guo X, Ennis RC, Fabrizio D, Chalmers ZR, Greenbowe J, et al: Targeted next generation sequencing identifies markers of response to PD-1 blockade. Cancer Immunol Res. 4:959–967. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yarchoan M, Hopkins A and Jaffee EM: Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med. 377:2500–2501. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, Minenza E, Linardou H, Burgers S, Salman P, et al: Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med. 378:2093–2104. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bylicki O, Barazzutti H, Paleiron N, Margery J, Assié JB and Chouaid C: First-line treatment of non-small-cell lung cancer (NSCLC) with immune checkpoint inhibitors. BioDrugs. 33:159–171. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, Plodkowski A, Long N, Sauter JL, Rekhtman N, et al: Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol. 36:633–641. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zeng DQ, Yu YF, Ou QY, Li XY, Zhong RZ, Xie CM and Hu QG: Prognostic and predictive value of tumor-infiltrating lymphocytes for clinical therapeutic research in patients with non-small cell lung cancer. Oncotarget. 7:13765–13781. 2016. View Article : Google Scholar : PubMed/NCBI | |
Geng Y, Shao Y, He W, Hu W, Xu Y, Chen J, Wu C and Jiang J: prognostic role of tumor-infiltrating lymphocytes in lung cancer: A meta-analysis. Cell Physiol Biochem. 37:1560–1571. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dong ZY, Wu SP, Liao RQ, Huang SM and Wu YL: Potential biomarker for checkpoint blockade immunotherapy and treatment strategy. Tumour Biol. 37:4251–4261. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, et al: PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 515:568–571. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sun R, Limkin EJ, Vakalopoulou M, Dercle L, Champiat S, Han SR, Verlingue L, Brandao D, Lancia A, Ammari S, et al: A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: An imaging biomarker, retrospective multicohort study. Lancet Oncol. 19:1180–1191. 2018. View Article : Google Scholar : PubMed/NCBI | |
Teng MW, Ngiow SF, Ribas A and Smyth MJ: Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res. 75:2139–2145. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tokito T, Azuma K, Kawahara A, Ishii H, Yamada K, Matsuo N, Kinoshita T, Mizukami N, Ono H, Kage M and Hoshino T: Predictive relevance of PD-L1 expression combined with CD8+ TIL density in stage III non-small cell lung cancer patients receiving concurrent chemoradiotherapy. Eur J Cancer. 55:7–14. 2016. View Article : Google Scholar : PubMed/NCBI | |
Baretti M and Le DT: DNA mismatch repair in cancer. Pharmacol Ther. 189:45–62. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nebot-Bral L, Coutzac C, Kannouche PL and Chaput N: Why is immunotherapy effective (or not) in patients with MSI/MMRD tumors? Bull Cancer. 106:105–113. 2019. View Article : Google Scholar : PubMed/NCBI | |
Quiroga D, Lyerly HK and Morse MA: Deficient mismatch repair and the role of immunotherapy in metastatic colorectal cancer. Curr Treat Options Oncol. 17:412016. View Article : Google Scholar : PubMed/NCBI | |
Le DT, Kim TW, Van Cutsem E, Geva R, Jäger D, Hara H, Burge M, O'Neil B, Kavan P, Yoshino T, et al: Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J Clin Oncol. 38:11–19. 2020. View Article : Google Scholar : PubMed/NCBI | |
Faivre JC, Adam V, Block V, Metzger M, Salleron J and Dauchy S: Clinical practice guidelines of the French association for supportive care in cancer and the French society for psycho-oncology: Refusal of treatment by adults afflicted with cancer. Support Care Cancer. 25:3425–3435. 2017. View Article : Google Scholar : PubMed/NCBI | |
Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, Desai J, Hill A, Axelson M, Moss RA, et al: Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study. Lancet Oncol. 18:1182–1191. 2017. View Article : Google Scholar : PubMed/NCBI | |
Morse MA, Overman MJ, Hartman L, Khoukaz T, Brutcher E, Lenz HJ, Atasoy A, Shangguan T, Zhao H and El-Rayes B: Safety of nivolumab plus low-dose ipilimumab in previously treated microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer. Oncologist. 24:1453–1461. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Zhao J, Wang G, Zhang F, Zhang Z, Zhang F, Zhang Y, Dong H, Zhao X, Duan J, et al: Comutations in DNA damage response pathways serve as potential biomarkers for immune checkpoint blockade. Cancer Res. 78:6486–6496. 2018.PubMed/NCBI | |
Teo MY, Seier K, Ostrovnaya I, Regazzi AM, Kania BE, Moran MM, Cipolla CK, Bluth MJ, Chaim J, Al-Ahmadie H, et al: Alterations in DNA damage response and repair genes as potential marker of clinical benefit from PD-1/PD-L1 blockade in advanced urothelial cancers. J Clin Oncol. 36:1685–1694. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rodenhuis S, van de Wetering ML, Mooi WJ, Evers SG, van Zandwijk N and Bos JL: Mutational activation of the K-ras oncogene. A possible pathogenetic factor in adenocarcinoma of the lung. N Engl J Med. 317:929–935. 1987. View Article : Google Scholar : PubMed/NCBI | |
Slebos RJ, Kibbelaar RE, Dalesio O, Kooistra A, Stam J, Meijer CJ, Wagenaar SS, Vanderschueren RG, van Zandwijk N, Mooi WJ, et al: K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N Engl J Med. 323:561–565. 1990. View Article : Google Scholar : PubMed/NCBI | |
Ji M, Liu Y, Li Q, Li X, Ning Z, Zhao W, Shi H, Jiang J and Wu C: PD-1/PD-L1 expression in non-small-cell lung cancer and its correlation with EGFR/KRAS mutations. Cancer Biol Ther. 17:407–413. 2016. View Article : Google Scholar : PubMed/NCBI | |
Calles A, Liao X, Sholl LM, Rodig SJ, Freeman GJ, Butaney M, Lydon C, Dahlberg SE, Hodi FS, Oxnard GR, et al: Expression of PD-1 and Its ligands, PD-L1 and PD-L2, in smokers and never smokers with KRAS-mutant lung cancer. J Thorac Oncol. 10:1726–1735. 2015. View Article : Google Scholar : PubMed/NCBI | |
Peters S, Gettinger S, Johnson ML, Jänne PA, Garassino MC, Christoph D, Toh CK, Rizvi NA, Chaft JE, Carcereny Costa E, et al: Phase II trial of atezolizumab as first-line or subsequent therapy for patients with programmed death-ligand 1-selected advanced non-small-cell lung cancer (BIRCH). J Clin Oncol. 35:2781–2789. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R and Ishioka C: Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA. 100:8424–8429. 2003. View Article : Google Scholar : PubMed/NCBI | |
Dong ZY, Zhong WZ, Zhang XC, Su J, Xie Z, Liu SY, Tu HY, Chen HJ, Sun YL, Zhou Q, et al: Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. Clin Cancer Res. 23:3012–3024. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chabanon RM, Pedrero M, Lefebvre C, Marabelle A, Soria JC and Postel-Vinay S: Mutational landscape and sensitivity to immune checkpoint blockers. Clin Cancer Res. 22:4309–4321. 2016. View Article : Google Scholar : PubMed/NCBI | |
Strickland KC, Howitt BE, Shukla SA, Rodig S, Ritterhouse LL, Liu JF, Garber JE, Chowdhury D, Wu CJ, D'Andrea AD, et al: Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget. 7:13587–13598. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jacome AA and Eng C: Role of immune checkpoint inhibitors in the treatment of colorectal cancer: Focus on nivolumab. Expert Opin Biol Ther. 19:1247–1263. 2019. View Article : Google Scholar : PubMed/NCBI | |
Song Z, Cheng G, Xu C, Wang W, Shao Y and Zhang Y: Clinicopathological characteristics of POLE mutation in patients with non-small-cell lung cancer. Lung Cancer. 118:57–61. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mehnert JM, Panda A, Zhong H, Hirshfield K, Damare S, Lane K, Sokol L, Stein MN, Rodriguez-Rodriquez L, Kaufman HL, et al: Immune activation and response to pembrolizumab in POLE-mutant endometrial cancer. J Clin Invest. 126:2334–2340. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, Zhang S, Wang J, Zhou S, Ren S, et al: Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): A multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 12:735–742. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sharma P, Hu-Lieskovan S, Wargo JA and Ribas A: Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 168:707–723. 2017. View Article : Google Scholar : PubMed/NCBI | |
Syn NL, Teng MWL, Mok TSK and Soo RA: De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 18:e731–e741. 2017. View Article : Google Scholar : PubMed/NCBI | |
Knutson KL and Disis ML: Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother. 54:721–728. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cha JH, Chan LC, Li CW, Hsu JL and Hung MC: Mechanisms controlling PD-L1 expression in cancer. Mol Cell. 76:359–370. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lin H, Wei S, Hurt EM, Green MD, Zhao L, Vatan L, Szeliga W, Herbst R, Harms PW, Fecher LA, et al: Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J Clin Invest. 128:17082018. View Article : Google Scholar : PubMed/NCBI | |
Gainor JF, Shaw AT, Sequist LV, Fu X, Azzoli CG, Piotrowska Z, Huynh TG, Zhao L, Fulton L, Schultz KR, et al: EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: A retrospective analysis. Clin Cancer Res. 22:4585–4593. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hastings K, Yu HA, Wei W, Sanchez-Vega F, DeVeaux M, Choi J, Rizvi H, Lisberg A, Truini A, Lydon CA, et al: EGFR mutation subtypes and response to immune checkpoint blockade treatment in non-small-cell lung cancer. Ann Oncol. 30:1311–1320. 2019. View Article : Google Scholar : PubMed/NCBI | |
Garassino MC, Gelibter AJ, Grossi F, Chiari R, Soto Parra H, Cascinu S, Cognetti F, Turci D, Blasi L, Bengala C, et al: Italian nivolumab expanded access program in nonsquamous non-small cell lung cancer patients: Results in never-smokers and EGFR-mutant patients. J Thorac Oncol. 13:1146–1155. 2018. View Article : Google Scholar : PubMed/NCBI | |
Garassino MC, Cho BC, Kim JH, Mazières J, Vansteenkiste J, Lena H, Corral Jaime J, Gray JE, Powderly J, Chouaid C, et al: Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): An open-label, single-arm, phase 2 study. Lancet Oncol. 19:521–536. 2018. View Article : Google Scholar : PubMed/NCBI | |
Su S, Dong ZY, Xie Z, Yan LX, Li YF, Su J, Liu SY, Yin K, Chen RL, Huang SM, et al: Strong programmed death ligand 1 expression predicts poor response and de novo resistance to EGFR tyrosine kinase inhibitors among NSCLC patients with EGFR mutation. J Thorac Oncol. 13:1668–1675. 2018. View Article : Google Scholar : PubMed/NCBI | |
Briscoe J, Guschin D, Rogers NC, Watling D, Müller M, Horn F, Heinrich P, Stark GR and Kerr IM: JAKs, STATs and signal transduction in response to the interferons and other cytokines. Philos Trans R Soc Lond B Biol Sci. 351:167–171. 1996. View Article : Google Scholar : PubMed/NCBI | |
Shin DS, Zaretsky JM, Escuin-Ordinas H, Garcia-Diaz A, Hu-Lieskovan S, Kalbasi A, Grasso CS, Hugo W, Sandoval S, Torrejon DY, et al: Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 7:188–201. 2017. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA, Zaretsky JM, Sun L, Hugo W, Wang X, et al: Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 29:37662019. View Article : Google Scholar : PubMed/NCBI | |
Massacesi C, di Tomaso E, Fretault N and Hirawat S: Challenges in the clinical development of PI3K inhibitors. Ann N Y Acad Sci. 1280:19–23. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mendes RD, Canté-Barrett K, Pieters R and Meijerink JP: The relevance of PTEN-AKT in relation to NOTCH1-directed treatment strategies in T-cell acute lymphoblastic leukemia. Haematologica. 101:1010–1017. 2016. View Article : Google Scholar : PubMed/NCBI | |
Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, Xu C, McKenzie JA, Zhang C, Liang X, et al: Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 6:202–216. 2016. View Article : Google Scholar : PubMed/NCBI | |
Roh MR, Gupta S, Park KH, Chung KY, Lauss M, Flaherty KT, Jönsson G, Rha SY and Tsao H: Promoter methylation of PTEN Is a significant prognostic factor in melanoma survival. J Invest Dermatol. 136:1002–1011. 2016. View Article : Google Scholar : PubMed/NCBI | |
Biton J, Mansuet-Lupo A, Pécuchet N, Alifano M, Ouakrim H, Arrondeau J, Boudou-Rouquette P, Goldwasser F, Leroy K, Goc J, et al: TP53, STK11, and EGFR mutations predict tumor immune profile and the response to Anti-PD-1 in lung adenocarcinoma. Clin Cancer Res. 24:5710–5723. 2018. View Article : Google Scholar : PubMed/NCBI | |
Skoulidis F, Goldberg ME, Greenawalt DM, Hellmann MD, Awad MM, Gainor JF, Schrock AB, Hartmaier RJ, Trabucco SE, Gay L, et al: STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov. 8:822–835. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jamme P, Fernandes M, Copin MC, Descarpentries C, Escande F, Morabito A, Grégoire V, Jamme M, Baldacci S, Tulasne D, et al: Alterations in the PI3K pathway drive resistance to MET inhibitors in NSCLC harboring MET exon 14 skipping mutations. J Thorac Oncol. 15:741–751. 2020. View Article : Google Scholar : PubMed/NCBI | |
Saigi M, Alburquerque-Bejar JJ and Sanchez-Cespedes M: Determinants of immunological evasion and immunocheckpoint inhibition response in non-small cell lung cancer: The genetic front. Oncogene. 38:5921–5932. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, Torrejon DY, Abril-Rodriguez G, Sandoval S, Barthly L, et al: Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 375:819–829. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gettinger S, Choi J, Hastings K, Truini A, Datar I, Sowell R, Wurtz A, Dong W, Cai G, Melnick MA, et al: Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 7:1420–1435. 2017. View Article : Google Scholar : PubMed/NCBI | |
S Saâda-Bouzid E, Defaucheux C, Karabajakian A, Coloma VP, Servois V, Paoletti X, Even C, Fayette J, Guigay J, Loirat D, et al: Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann Oncol. 28:1605–1611. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fuentes-Antrás J, Provencio M and Diaz-Rubio E: Hyperprogression as a distinct outcome after immunotherapy. Cancer Treat Rev. 70:16–21. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kato S, Goodman A, Walavalkar V, Barkauskas DA, Sharabi A and Kurzrock R: Hyperprogressors after immunotherapy: Analysis of genomic alterations associated with accelerated growth rate. Clin Cancer Res. 23:4242–4250. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mazieres J, Drilon A, Lusque A, Mhanna L, Cortot AB, Mezquita L, Thai AA, Mascaux C, Couraud S, Veillon R, et al: Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: Results from the IMMUNOTARGET registry. Ann Oncol. 30:1321–1328. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ferrara R, Mezquita L, Texier M, Lahmar J, Audigier-Valette C, Tessonnier L, Mazieres J, Zalcman G, Brosseau S, Le Moulec S, et al: Hyperprogressive disease in patients with advanced non-small cell lung cancer treated with PD-1/PD-L1 inhibitors or with single-agent chemotherapy. JAMA Oncol. 4:1543–1552. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kim CG, Kim KH, Pyo KH, Xin CF, Hong MH, Ahn BC, Kim Y, Choi SJ, Yoon HI, Lee JG, et al: Hyperprogressive disease during PD-1/PD-L1 blockade in patients with non-small-cell lung cancer. Ann Oncol. 30:1104–1113. 2019. View Article : Google Scholar : PubMed/NCBI | |
Champiat S, Ferrara R, Massard C, Besse B, Marabelle A, Soria JC and Ferté C: Hyperprogressive disease: Recognizing a novel pattern to improve patient management. Nat Rev Clin Oncol. 15:748–762. 2018. View Article : Google Scholar : PubMed/NCBI | |
Oliner JD, Saiki AY and Caenepeel S: The role of MDM2 amplification and overexpression in tumorigenesis. Cold Spring Harb Perspect Med. 6:a0263362016. View Article : Google Scholar : PubMed/NCBI | |
Kato S, Ross JS, Gay L, Dayyani F, Roszik J, Subbiah V and Kurzrock R: Analysis of MDM2 amplification: Next-generation sequencing of patients with diverse malignancies. JCO Precis Oncol 2018. 10.1200/PO.17.00235. 2018. View Article : Google Scholar | |
Giusti R, Mazzotta M, Filetti M, Marinelli D, Di Napoli A, Scarpino S, Scafetta G, Mei M, Vecchione A, Ruco L and Marchetti P: CDKN2A/B gene loss and MDM2 alteration as a potential molecular signature for hyperprogressive disease in advanced NSCLC: A next-generation-sequencing approach. J Clin Oncol. 37 (15 Suppl):e20628. 2019. View Article : Google Scholar | |
Auslander N, Zhang G, Lee JS, Frederick DT, Miao B, Moll T, Tian T, Wei Z, Madan S, Sullivan RJ, et al: Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nat Med. 24:1545–1549. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, Li Z, Traugh N, Bu X, Li B, et al: Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 24:1550–1558. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mezquita L, Auclin E, Ferrara R, Charrier M, Remon J, Planchard D, Ponce S, Ares LP, Leroy L, Audigier-Valette C, et al: Association of the lung immune prognostic index with immune checkpoint inhibitor outcomes in patients with advanced non-small cell lung cancer. JAMA Oncol. 4:351–357. 2018. View Article : Google Scholar : PubMed/NCBI | |
Harders SW, Balyasnikowa S and Fischer BM: Functional imaging in lung cancer. Clin Physiol Funct Imaging. 34:340–355. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rossi S, Castello A, Toschi L and Lopci E: Immunotherapy in non-small-cell lung cancer: Potential predictors of response and new strategies to assess activity. Immunotherapy. 10:797–805. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vrankar M and Unk M: Immune RECIST criteria and symptomatic pseudoprogression in non-small cell lung cancer patients treated with immunotherapy. Radiol Oncol. 52:365–369. 2018. View Article : Google Scholar : PubMed/NCBI | |
Andrews MC and Wargo JA: Cancer evolution during immunotherapy. Cell. 171:740–742. 2017. View Article : Google Scholar : PubMed/NCBI |