1
|
Folkman J: Angiogenesis in cancer,
vascular, rheumatoid and other disease. Nat Med. 1:27–31. 1995.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Folkman J: Role of angiogenesis in tumor
growth and metastasis. Semin Oncol. 29 (6 Suppl 16):S15–S18. 2002.
View Article : Google Scholar
|
3
|
Folkman J: Anti-angiogenesis: New concept
for therapy of solid tumors. Ann Surg. 175:409–416. 1972.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Carmeliet P and Jain RK: Angiogenesis in
cancer and other diseases. Nature. 407:249–257. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hlatky L, Hahnfeldt P and Folkman J:
Clinical application of antiangiogenic therapy: Microvessel
density, what it does and doesn't tell us. J Natl Cancer Inst.
94:883–893. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Tae K, El-Naggar AK, Yoo E, Feng L, Lee
JJ, Hong WK, Hittelman WN and Shin DM: Expression of vascular
endothelial growth factor and microvessel density in head and neck
tumorigenesis. Clin Cancer Res. 6:2821–2828. 2000.PubMed/NCBI
|
7
|
Zhou D, Cheng SQ, Ji HF, Wang JS, Xu HT,
Zhang GQ and Pang D: Evaluation of protein pigment
epithelium-derived factor (PEDF) and microvessel density (MVD) as
prognostic indicators in breast cancer. J Cancer Res Clin Oncol.
136:1719–1727. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Pastushenko I, Vermeulen PB, Carapeto FJ,
Van den Eynden G, Rutten A, Ara M, Dirix LY and Van Laere S: Blood
microvessel density, lymphatic microvessel density and lymphatic
invasion in predicting melanoma metastases: Systematic review and
meta-analysis. Br J Dermatol. 170:66–77. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Miyata Y and Sakai H: Reconsideration of
the clinical and histopathological significance of angiogenesis in
prostate cancer: Usefulness and limitations of microvessel density
measurement. Int J Urol. 22:806–815. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Huang J, Ma X, Chen X, Liu X, Zhang B,
Minmin L, Nie W, Zhang L and Liu L: Microvessel density as a
prognostic factor in bladder cancer: A systematic review of
literature and meta-analysis. Cancer Biomark. 14:505–514. 2014.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Aziz SA, Sznol J, Adeniran A, Colberg JW,
Camp RL and Kluger HM: Vascularity of primary and metastatic renal
cell carcinoma specimens. J Transl Med. 11:152013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Derosa L, Bayar MA, Albiges L, Le Teuff G
and Escudier B: A new prognostic model for survival in second line
for metastatic renal cell carcinoma: Development and external
validation. Angiogenesis. 22:383–395. 2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Nativ O, Sabo E, Reiss A, Wald M, Madjar S
and Moskovitz B: Clinical significance of tumor angiogenesis in
patients with localized renal cell carcinoma. Urology. 51:693–696.
1998. View Article : Google Scholar : PubMed/NCBI
|
14
|
Fukata S, Inoue K, Kamada M, Kawada C,
Furihata M, Ohtsuki Y and Shuin T: Levels of angiogenesis and
expression of angiogenesis-related genes are prognostic for
organ-specific metastasis of renal cell carcinoma. Cancer.
103:931–942. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Joo H, Oh D, Kim Y, Lee K and Kim S:
Increased expression of caveolin-1 and microvessel density
correlates with metastasis and poor prognosis in clear cell renal
cell carcinoma. BJU Int. 93:291–296. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Minardi D, Lucarini G, Filosa A, Milanese
G, Zizzi A, Di Primio R, Montironi R and Muzzonigro G: Prognostic
role of tumor necrosis, microvessel density, vascular endothelial
growth factor and hypoxia inducible factor-1alpha in patients with
clear cell renal carcinoma after radical nephrectomy in a long term
follow-up. Int J Immunopathol Pharmacol. 21:447–455. 2008.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Iakovlev VV, Gabril M, Dubinski W,
Scorilas A, Youssef YM, Faragalla H, Kovacs K, Rotondo F, Metias S,
Arsanious A, et al: Microvascular density as an independent
predictor of clinical outcome in renal cell carcinoma: An automated
image analysis study. Lab Invest. 92:46–56. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Paradis V, Lagha NB, Zeimoura L, Blanchet
P, Eschwege P, Ba N, Benoît G, Jardin A and Bedossa P: Expression
of vascular endothelial growth factor in renal cell carcinomas.
Virchows Arch. 436:351–356. 2000. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang X, Yamashita M, Uetsuki H and Kakehi
Y: Angiogenesis in renal cell carcinoma: Evaluation of microvessel
density, vascular endothelial growth factor and matrix
metalloproteinases. Int J Urol. 9:509–514. 2002. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tuna B, Yorukoglu K, Unlu M, Mungan MU and
Kirkali Z: Association of mast cells with microvessel density in
renal cell carcinomas. Eur Urol. 50:530–534. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Slaton JW, Inoue K, Perrotte P, El-Naggar
AK, Swanson DA, Fidler IJ and Dinney CP: Expression levels of genes
that regulate metastasis and angiogenesis correlate with advanced
pathological stage of renal cell carcinoma. Am J Pathol.
158:735–743. 2001. View Article : Google Scholar : PubMed/NCBI
|
22
|
Mohseni MG, Mohammadi A, Heshmat AS,
Kosari F and Meysamie AP: The lack of correlation between mast
cells and microvessel density with pathologic feature of renal cell
carcinoma. Int Urol Nephrol. 42:109–112. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
MacLennan GT and Bostwick DG: Microvessel
density in renal cell carcinoma: Lack of prognostic significance.
Urology. 46:27–30. 1995. View Article : Google Scholar : PubMed/NCBI
|
24
|
Gelb AB, Sudilovsky D, Wu CD, Weiss LM and
Medeiros LJ: Appraisal of intratumoral microvessel density, MIB-1
score, DNA content, and p53 protein expression as prognostic
indicators in patients with locally confined renal cell carcinoma.
Cancer. 80:1768–1775. 1997. View Article : Google Scholar : PubMed/NCBI
|
25
|
Suzuki K, Morita T, Hashimoto S and Tokue
A: Thymidine phosphorylase/platelet-derived endothelial cell growth
factor (PD-ECGF) associated with prognosis in renal cell carcinoma.
Urol Res. 29:7–12. 2001. View Article : Google Scholar : PubMed/NCBI
|
26
|
Minardi D, Lucarini G, Mazzucchelli R,
Milanese G, Natali D, Galosi AB, Montironi R, Biagini G and
Muzzonigro G: Prognostic role of fuhrman grade and vascular
endothelial growth factor in pT1a clear cell carcinoma in partial
nephrectomy specimens. J Urol. 174:1208–1212. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Anastassiou G, Duensing S, Steinhoff G,
Zorn U, Grosse J, Dallmann I, Kirchner H, Ganser A and Atzpodien J:
Platelet endothelial cell adhesion molecule-1 (PECAM-1): A
potential prognostic marker involved in leukocyte infiltration of
renal cell carcinoma. Oncology. 53:127–132. 1996. View Article : Google Scholar : PubMed/NCBI
|
28
|
Rioux-Leclercq N, Epstein JI, Bansard JY,
Turlin B, Patard JJ, Manunta A, Chan T, Ramee MP, Lobel B and
Moulinoux JP: Clinical significance of cell proliferation,
microvessel density, and CD44 adhesion molecule expression in renal
cell carcinoma. Hum Pathol. 32:1209–1215. 2001. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yagasaki H, Kawata N, Takimoto Y and
Nemoto N: Histopathological analysis of angiogenic factors in renal
cell carcinoma. Int J Urol. 10:220–227. 2003. View Article : Google Scholar : PubMed/NCBI
|
30
|
Imao T, Egawa M, Takashima H, Koshida K
and Namiki M: Inverse correlation of microvessel density with
metastasis and prognosis in renal cell carcinoma. Int J Urol.
11:948–953. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Mertz KD, Demichelis F, Kim R, Schraml P,
Storz M, Diener PA, Moch H and Rubin MA: Automated
immunofluorescence analysis defines microvessel area as a
prognostic parameter in clear cell renal cell cancer. Hum Pathol.
38:1454–1462. 2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Yildiz E, Ayan S, Goze F, Gokce G and
Gultekin EY: Relation of microvessel density with microvascular
invasion, metastasis and prognosis in renal cell carcinoma. BJU
Int. 101:758–764. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yoshino S, Kato M and Okada K: Prognostic
significance of microvessel count in low stage renal cell
carcinoma. Int J Urol. 2:156–160. 1995. View Article : Google Scholar : PubMed/NCBI
|
34
|
Sabo E, Boltenko A, Sova Y, Stein A,
Kleinhaus S and Resnick MB: Microscopic analysis and significance
of vascular architectural complexity in renal cell carcinoma. Clin
Cancer Res. 7:533–537. 2001.PubMed/NCBI
|
35
|
Delahunt B, Bethwaite P and Thornton A:
Prognostic significance of microscopic vascularity for clear cell
renal cell carcinoma. Br J Urol. 80:401–404. 1997. View Article : Google Scholar : PubMed/NCBI
|
36
|
Schraml P, Struckmann K, Hatz F, Sonnet S,
Kully C, Gasser T, Sauter G, Mihatsch MJ and Moch H: VHL mutations
and their correlation with tumour cell proliferation, microvessel
density, and patient prognosis in clear cell renal cell carcinoma.
J Pathol. 196:186–193. 2002. View Article : Google Scholar : PubMed/NCBI
|
37
|
Sandlund J, Hedberg Y, Bergh A, Grankvist
K, Ljungberg B and Rasmuson T: Endoglin (CD105) expression in human
renal cell carcinoma. BJU Int. 97:706–710. 2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Sandlund J, Hedberg Y, Bergh A, Grankvist
K, Ljungberg B and Rasmuson T: Evaluation of CD31 (PECAM-1)
expression using tissue microarray in patients with renal cell
carcinoma. Tumor Biol. 28:158–164. 2007. View Article : Google Scholar
|
39
|
Köhler HH, Barth PJ, Siebel A, Gerharz EW
and Bittinger A: Quantitative assessment of vascular surface
density in renal cell carcinomas. Br J Urol. 77:650–654. 1996.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Hemmerlein B, Kugler A, Özisik R, Ringert
RH, Radzun HJ and Thelen P: Vascular endothelial growth factor
expression, angiogenesis, and necrosis in renal cell carcinomas.
Virchows Arch. 439:645–652. 2001. View Article : Google Scholar : PubMed/NCBI
|
41
|
Baldewijns MM, Thijssen VL, Van den Eynden
GG, Van Laere SJ, Bluekens AM, Roskams T, van Poppel H, De Bruïne
AP, Griffioen AW and Vermeulen PB: High-grade clear cell renal cell
carcinoma has a higher angiogenic activity than low-grade renal
cell carcinoma based on histomorphological quantification and
qRT-PCR mRNA expression profile. Br J Cancer. 96:1888–1895. 2007.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Kavantzas N, Paraskevakou H,
Tseleni-Balafouta S, Aroni K, Athanassiades P, Agrogiannis G and
Patsouris E: Association between microvessel density and histologic
grade in renal cell carcinomas. Pathol Oncol Res. 13:145–148. 2007.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Sharma SG, Aggarwal N, Gupta SD, Singh MK,
Gupta R and Dinda AK: Angiogenesis in renal cell carcinoma:
Correlation of microvessel density and microvessel area with other
prognostic factors. Int Urol Nephrol. 43:125–129. 2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Weidner N: Intratumor microvessel density
as a prognostic factor in cancer. Am J Pathol. 147:91995.PubMed/NCBI
|
45
|
Maniotis AJ, Folberg R, Hess A, Seftor EA,
Gardner LM, Pe'er J, Trent JM, Meltzer PS and Hendrix MJ: Vascular
channel formation by human melanoma cells in vivo and in vitro:
Vasculogenic mimicry. Am J Pathol. 155:739–752. 1999. View Article : Google Scholar : PubMed/NCBI
|
46
|
Shirakawa K, Kobayashi H, Heike Y,
Kawamoto S, Brechbiel MW, Kasumi F, Iwanaga T, Konishi F, Terada M
and Wakasugi H: Hemodynamics in vasculogenic mimicry and
angiogenesis of inflammatory breast cancer xenograft. Cancer Res.
62:560–566. 2002.PubMed/NCBI
|
47
|
Sun B, Zhang S, Zhang D, Du J, Guo H, Zhao
X, Zhang W and Hao X: Vasculogenic mimicry is associated with high
tumor grade, invasion and metastasis, and short survival in
patients with hepatocellular carcinoma. Oncol Rep. 16:693–698.
2006.PubMed/NCBI
|
48
|
Lee H, Lee M, Lee SE, Byun SS, Kim HH,
Kwak C and Hong SK: Outcomes of pathologic stage T3a renal cell
carcinoma up-staged from small renal tumor: Emphasis on partial
nephrectomy. BMC Cancer. 18:4272018. View Article : Google Scholar : PubMed/NCBI
|
49
|
Nowak-Sliwinska P, Alitalo K, Allen E,
Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van
Beijnum JR, Bender RHF, et al: Consensus guidelines for the use and
interpretation of angiogenesis assays. Angiogenesis. 21:425–532.
2018. View Article : Google Scholar : PubMed/NCBI
|
50
|
Feng Y, Song K, Shang W, Chen L, Wang C,
Pang B and Wang N: REDD1 overexpression in oral squamous cell
carcinoma may predict poor prognosis and correlates with high
microvessel density. Oncol Lett. 19:431–441. 2020.PubMed/NCBI
|
51
|
Vartanian AA, Stepanova EV, Gutorov SL,
Solomko ES, Grigorieva IN, Sokolova IN, Baryshnikov AY and
Lichinitser MR: Prognostic significance of periodic
acid-Schiff-positive patterns in clear cell renal cell carcinoma.
Can J Urol. 16:4726–4732. 2009.PubMed/NCBI
|
52
|
Zhang Y, Sun B, Zhao X, Liu Z, Wang X, Yao
X, Dong X and Chi J: Clinical significances and prognostic value of
cancer stem-like cells markers and vasculogenic mimicry in renal
cell carcinoma. J Surg Oncol. 108:414–419. 2013. View Article : Google Scholar : PubMed/NCBI
|
53
|
Qiao L, Liang N, Zhang J, Xie J, Liu F, Xu
D, Yu X and Tian Y: Advanced research on vasculogenic mimicry in
cancer. J Cell Mol Med. 19:315–326. 2015. View Article : Google Scholar : PubMed/NCBI
|
54
|
Paulis YW, Soetekouw PM, Verheul HM,
Tjan-Heijnen VC and Griffioen AW: Signalling pathways in
vasculogenic mimicry. Biochim Biophys Acta. 1806:18–28.
2010.PubMed/NCBI
|
55
|
Kirschmann DA, Seftor EA, Hardy KM, Seftor
RE and Hendrix MJ: Molecular pathways: Vasculogenic mimicry in
tumor cells: Diagnostic and therapeutic implications. Clin Cancer
Res. 18:2726–2732. 2012. View Article : Google Scholar : PubMed/NCBI
|
56
|
Bai J, Yeh S, Qiu X, Hu L, Zeng J, Cai Y,
Zuo L, Li G, Yang G and Chang C: TR4 nuclear receptor promotes
clear cell renal cell carcinoma (ccRCC) vasculogenic mimicry (VM)
formation and metastasis via altering the miR490-3p/vimentin
signals. Oncogene. 37:5901–5912. 2018. View Article : Google Scholar : PubMed/NCBI
|
57
|
Sabo E, Miselevich I, Bejar J, Segenreich
M, Wald M, Moskovitz B and Nativ O: The role of vimentin expression
in predicting the long-term outcome of patients with localized
renal cell carcinoma. Br J Urol. 80:864–868. 1997. View Article : Google Scholar : PubMed/NCBI
|
58
|
Weidner N, Semple JP, Welch WR and Folkman
J: Tumor angiogenesis and metastasis-correlation in invasive breast
carcinoma. N Engl J Med. 324:1–8. 1991. View Article : Google Scholar : PubMed/NCBI
|
59
|
Sandlund J, Hedberg Y, Bergh A, Grankvist
K, Ljungberg B and Rasmuson T: Endoglin (CD105) expression in human
renal cell carcinoma. BJU Int. 97:706–710. 2006. View Article : Google Scholar : PubMed/NCBI
|
60
|
Sandlund J, Hedberg Y, Bergh A, Grankvist
K, Ljungberg B and Rasmuson T: Evaluation of CD31 (PECAM-1)
expression using tissue microarray in patients with renal cell
carcinoma. Tumour Biol. 28:158–164. 2007. View Article : Google Scholar : PubMed/NCBI
|
61
|
Yao X, Qian CN, Zhang ZF, Tan MH, Kort EJ,
Yang XJ, Resau JH and The BT: Two distinct types of blood vessels
in clear cell renal cell carcinoma have contrasting prognostic
implications. Clin Cancer Res. 13:161–169. 2007. View Article : Google Scholar : PubMed/NCBI
|
62
|
Qian CN, Huang D, Wondergem B and Teh BT:
Complexity of tumor vasculature in clear cell renal cell carcinoma.
Cancer. 115 (10 Suppl):S2282–S2289. 2009. View Article : Google Scholar
|
63
|
Kuczynski EA and Reynolds AR: Vessel
co-option and resistance to anti-angiogenic therapy. Angiogenesis.
23:55–74. 2020. View Article : Google Scholar : PubMed/NCBI
|
64
|
Kuczynski EA, Vermeulen PB, Pezzella F,
Kerbel RS and Reynolds AR: Vessel co-option in cancer. Nat Rev Clin
Oncol. 16:469–493. 2019. View Article : Google Scholar : PubMed/NCBI
|
65
|
Latacz E, Caspani E, Barnhill R, Lugassy
C, Verhoef C, Grünhagen D, Van Laere S, Moro CF, Gerling M, Dirix
M, et al: Pathological features of vessel co-option versus
sprouting angiogenesis. Angiogenesis. 23:43–54. 2020. View Article : Google Scholar : PubMed/NCBI
|
66
|
Yang JP, Liao YD, Mai DM, Xie P, Qiang YY,
Zheng LS, Wang MY, Mei Y, Meng DF, Xu L, et al: Tumor vasculogenic
mimicry predicts poor prognosis in cancer patients: A
meta-analysis. Angiogenesis. 19:191–200. 2016. View Article : Google Scholar : PubMed/NCBI
|
67
|
Hueng DY, Lin GJ, Huang SH, Liu LW, Ju DT,
Chen YW, Sytwu HK, Chang C, Huang SM, Yeh YS, et al: Inhibition of
Nodal suppresses angiogenesis and growth of human gliomas. J
Neurooncol. 104:21–31. 2011. View Article : Google Scholar : PubMed/NCBI
|
68
|
Feng X, Yu Y, He S, Cheng J, Gong Y, Zhang
Z, Yang X, Xu B, Liu X, Li CY, et al: Dying glioma cells establish
a proangiogenic microenvironment through a caspase 3 dependent
mechanism. Cancer Lett. 385:12–20. 2017. View Article : Google Scholar : PubMed/NCBI
|
69
|
Bekes EM, Schweighofer B, Kupriyanova TA,
Zajac E, Ardi VC, Quigley JP and Deryugina EI: Tumor-recruited
neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately
the levels of tumor angiogenesis and efficiency of malignant cell
intravasation. Am J Pathol. 179:1455–1470. 2011. View Article : Google Scholar : PubMed/NCBI
|
70
|
Jia W, Kidoya H, Yamakawa D, Naito H and
Takakura N: Galectin-3 accelerates M2 macrophage infiltration and
angiogenesis in tumors. Am J Pathol. 182:1821–1831. 2013.
View Article : Google Scholar : PubMed/NCBI
|
71
|
Bentley K, Franco CA, Philippides A,
Blanco R, Dierkes M, Gebala V, Stanchi F, Jones M, Aspalter IM,
Cagna G, et al: The role of differential VE-cadherin dynamics in
cell rearrangement during angiogenesis. Nat Cell Biol. 16:309–321.
2014. View Article : Google Scholar : PubMed/NCBI
|
72
|
Wang JY, Sun T, Zhao XL, Zhang SW, Zhang
DF, Gu Q, Wang XH, Zhao N, Qie S and Sun BC: Functional
significance of VEGF-a in human ovarian carcinoma: Role in
vasculogenic mimicry. Cancer Biol Ther. 7:758–766. 2008. View Article : Google Scholar : PubMed/NCBI
|
73
|
Motzer RJ, Tannir NM, McDermott DF, Arén
Frontera O, Melichar B, Choueiri TK, Plimack ER, Barthélémy P,
Porta C, George S, et al: Nivolumab plus ipilimumab versus
sunitinib in advanced renal-cell carcinoma. N Engl J Med.
378:1277–1290. 2018. View Article : Google Scholar : PubMed/NCBI
|
74
|
Powles T, Albiges L, Staehler M, Bensalah
K, Dabestani S, Giles RH, Hofmann F, Hora M, Kuczyk MA, Lam TB, et
al: Updated european association of urology guidelines
recommendations for the treatment of first-line metastatic clear
cell renal cancer. Eur Urol. 73:311–315. 2018. View Article : Google Scholar : PubMed/NCBI
|
75
|
Azuma T, Sugihara T, Honda S, Yoshizaki U,
Niimi F, Tsuru I and Kume H: Metastatic renal cell carcinoma
regains sensitivity to tyrosine kinase inhibitor after nivolumab
treatment: A case report. Oncol Lett. 17:4011–4015. 2019.PubMed/NCBI
|
76
|
Wei W, Lv Y, Gan Z, Zhang Y, Han X and Xu
Z: Identification of key genes involved in the metastasis of clear
cell renal cell carcinoma. Oncol Lett. 17:4321–4328.
2019.PubMed/NCBI
|
77
|
Carlsson J, Christiansen J, Davidsson S,
Giunchi F, Fiorentino M and Sundqvist P: The potential role of
miR-126, miR-21 and miR-10b as prognostic biomarkers in renal cell
carcinoma. Oncol Lett. 17:4566–4574. 2019.PubMed/NCBI
|
78
|
Gao Y, Qi JC, Li X, Sun JP, Ji H and Li
QH: Decreased expression of TXNIP predicts poor prognosis in
patients with clear cell renal cell carcinoma. Oncol Lett.
19:763–770. 2020.PubMed/NCBI
|
79
|
Yan N, Feng X, Jiang S, Sun W, Sun MZ and
Liu S: GRIM-19 deficiency promotes clear cell renal cell carcinoma
progression and is associated with high TNM stage and fuhrman
grade. Oncol Lett. 19:4115–4121. 2020.PubMed/NCBI
|