1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
American Cancer Society, . Cancer Facts
and Figures 2020. Atlanta: American Cancer Society; 2020
|
3
|
Leonel Almeida P and Jorge Pereira B:
Local treatment of metastatic prostate cancer: What is the evidence
so far? Prostate Cancer. 2018:26545722018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Semenas J, Allegrucci C, Boorjian SA,
Mongan NP and Persson JL: Overcoming drug resistance and treating
advanced prostate cancer. Curr Drug Targets. 13:1308–1323. 2012.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Cragg GM and Newman DJ: Natural products:
A continuing source of novel drug leads. Biochim Biophys Acta.
1830:3670–3695. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Olaku O and White JD: Herbal therapy use
by cancer patients: A literature review on case reports. Eur J
Cancer. 47:508–514. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Che CT and Zhang H: Plant natural products
for human health. Int J Mol Sci. 20:8302019. View Article : Google Scholar
|
8
|
Cowan MM: Plant products as antimicrobial
agents. Clin Microbiol Rev. 12:564–582. 1999. View Article : Google Scholar : PubMed/NCBI
|
9
|
Panche AN, Diwan AD and Chandra SR:
Flavonoids: An overview. J Nutr Sci. 5:e472016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sofowora A, Ogunbodede E and Onayade A:
The role and place of medicinal plants in the strategies for
disease prevention. Afr J Tradit Complement Altern Med. 10:210–229.
2013.PubMed/NCBI
|
11
|
Pan SY, Zhou SF, Gao SH, Yu ZL, Zhang SF,
Tang MK, Sun JN, Ma DL, Han YF, Fong WF and Ko KM: New perspectives
on how to discover drugs from herbal medicines: CAM's outstanding
contribution to modern therapeutics. Evid Based Complement Alternat
Med. 2013:6273752013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Peana AT, D'Aquila PS, Panin F, Serra G,
Pippia P and Moretti MD: Anti-inflammatory activity of linalool and
linalyl acetate constituents of essential oils. Phytomedicine.
9:721–726. 2002. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zengin H and Baysal AH: Antibacterial and
antioxidant activity of essential oil terpenes against pathogenic
and spoilage-forming bacteria and cell structure-activity
relationships evaluated by SEM microscopy. Molecules.
19:17773–17798. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Iwasaki K, Zheng YW, Murata S, Ito H,
Nakayama K, Kurokawa T, Sano N, Nowatari T, Villareal MO, Nagano
YN, et al: Anticancer effect of linalool via cancer-specific
hydroxyl radical generation in human colon cancer. World J
Gastroenterol. 22:9765–9774. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chang MY, Shieh DE, Chen CC, Yeh CS and
Dong HP: Linalool induces cell cycle arrest and apoptosis in
leukemia cells and cervical cancer cells through CDKIs. Int J Mol
Sci. 16:28169–28179. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhao Y, Chen R, Wang Y, Qing C, Wang W and
Yang Y: In vitro and in vivo efficacy studies of lavender
angustifolia essential oil and its active constituents on the
proliferation of human prostate cancer. Integr Cancer Ther.
16:215–226. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gunaseelan S, Balupillai A, Govindasamy K,
Ramasamy K, Muthusamy G, Shanmugam M, Thangaiyan R, Robert BM,
Prasad Nagarajan R, Ponniresan VK and Rathinaraj P: Linalool
prevents oxidative stress activated protein kinases in single
UVB-exposed human skin cells. PLoS One. 12:e01766992017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chang MY and Shen YL: Linalool exhibits
cytotoxic effects by activating antitumor immunity. Molecules.
19:6694–6706. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Gu Y, Ting Z, Qiu X, Zhang X, Gan X, Fang
Y, Xu X and Xu R: Linalool preferentially induces robust apoptosis
of a variety of leukemia cells via upregulating p53 and
cyclin-dependent kinase inhibitors. Toxicology. 268:19–24. 2010.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Cheng Y, Dai C and Zhang J: SIRT3-SOD2-ROS
pathway is involved in linalool-induced glioma cell apoptotic
death. Acta Biochim Pol. 64:343–350. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Baracca A, Sgarbi G, Solaini G and Lenaz
G: Rhodamine 123 as a probe of mitochondrial membrane potential:
Evaluation of proton flux through F(0) during ATP synthesis.
Biochim Biophys Acta. 1606:137–146. 2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chen Q, Gong B and Almasan A: Distinct
stages of cytochrome c release from mitochondria: Evidence for a
feedback amplification loop linking caspase activation to
mitochondrial dysfunction in genotoxic stress induced apoptosis.
Cell Death Differ. 7:227–233. 2000. View Article : Google Scholar : PubMed/NCBI
|
23
|
Von Low EC, Perabo FG, Siener R and Muller
SC: Review. Facts and fiction of phytotherapy for prostate cancer:
A critical assessment of preclinical and clinical data. In Vivo.
21:189–204. 2007.PubMed/NCBI
|
24
|
Pan W and Zhang G: Linalool monoterpene
exerts potent antitumor effects in OECM 1 human oral cancer cells
by inducing sub-G1 cell cycle arrest, loss of mitochondrial
membrane potential and inhibition of PI3K/AKT biochemical pathway.
J BUON. 24:323–328. 2019.PubMed/NCBI
|
25
|
Rodenak-Kladniew B, Castro A, Starkel P,
De Saeger C, Garcia de Bravo M and Crespo R: Linalool induces cell
cycle arrest and apoptosis in HepG2 cells through oxidative stress
generation and modulation of Ras/MAPK and Akt/mTOR pathways. Life
Sci. 199:48–59. 2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Leroy B, Girard L, Hollestelle A, Minna
JD, Gazdar AF and Soussi T: Analysis of TP53 mutation status in
human cancer cell lines: A reassessment. Hum Mutat. 35:756–765.
2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Cronauer MV, Schulz WA, Burchardt T,
Ackermann R and Burchardt M: Inhibition of p53 function diminishes
androgen receptor-mediated signaling in prostate cancer cell lines.
Oncogene. 23:3541–3549. 2004. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hardwick JM and Soane L: Multiple
functions of BCL-2 family proteins. Cold Spring Harb Perspect Biol.
5:a0087222013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Perlman H, Zhang X, Chen MW, Walsh K and
Buttyan R: An elevated bax/bcl-2 ratio corresponds with the onset
of prostate epithelial cell apoptosis. Cell Death Differ. 6:48–54.
1999. View Article : Google Scholar : PubMed/NCBI
|
30
|
Dewson G and Kluck RM: Mechanisms by which
Bak and Bax permeabilise mitochondria during apoptosis. J Cell Sci.
122:2801–2808. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Bratton SB and Salvesen GS: Regulation of
the Apaf-1-caspase-9 apoptosome. J Cell Sci. 123:3209–3214. 2010.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Valley CC, Lewis AK, Mudaliar DJ,
Perlmutter JD, Braun AR, Karim CB, Thomas DD, Brody JR and Sachs
JN: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)
induces death receptor 5 networks that are highly organized. J Biol
Chem. 287:21265–21278. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Young MM, Takahashi Y, Khan O, Park S,
Hori T, Yun J, Sharma AK, Amin S, Hu CD, Zhang J, et al:
Autophagosomal membrane serves as platform for intracellular
death-inducing signaling complex (iDISC)-mediated caspase-8
activation and apoptosis. J Biol Chem. 287:12455–12468. 2012.
View Article : Google Scholar : PubMed/NCBI
|
34
|
McIlwain DR, Berger T and Mak TW: Caspase
functions in cell death and disease. Cold Spring Harb Perspect
Biol. 5:a0086562013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Fossati S, Ghiso J and Rostagno A: TRAIL
death receptors DR4 and DR5 mediate cerebral microvascular
endothelial cell apoptosis induced by oligomeric Alzheimer's Aβ.
Cell Death Dis. 3:e3212012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bantis A, Giannopoulos A, Gonidi M, Liossi
A, Aggelonidou E, Petrakakou E, Athanassiades P and Athanassiadou
P: Expression of p120, Ki-67 and PCNA as proliferation biomarkers
in imprint smears of prostate carcinoma and their prognostic value.
Cytopathology. 15:25–31. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Sulik M and Guzinska-Ustymowicz K:
Expression of Ki-67 and PCNA as proliferating markers in prostate
cancer. Rocz Akad Med Bialymst. 47:262–269. 2002.PubMed/NCBI
|
38
|
Zhong W, Peng J, He H, Wu D, Han Z, Bi X
and Dai Q: Ki-67 and PCNA expression in prostate cancer and benign
prostatic hyperplasia. Clin Invest Med. 31:E8–E15. 2008. View Article : Google Scholar : PubMed/NCBI
|