Antineoplastic effect of a novel nanosized curcumin on cutaneous T cell lymphoma
- Authors:
- Antonios G.Χ. Trochopoulos
- Maya M. Zaharieva
- Mirela H. Marinova
- Krasimira Yoncheva
- Ivanka Pencheva‑El Tibi
- Martin R. Berger
- Spiro M. Konstantinov
-
Affiliations: Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria, Department of Infectious Microbiology, Institute of Microbiology ‘Stephan Angeloff’, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria, Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria, Unit of Toxicology and Chemotherapy, German Cancer Research Center, D‑69120 Heidelberg, Germany - Published online on: September 29, 2020 https://doi.org/10.3892/ol.2020.12167
- Article Number: 304
-
Copyright: © Trochopoulos et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Hwang ST, Janik JE, Jaffe ES and Wilson WH: Mycosis fungoides and Sézary syndrome. Lancet. 371:945–957. 2008. View Article : Google Scholar : PubMed/NCBI | |
Willemze R, Kerl H, Sterry W, Berti E, Cerroni L, Chimenti S, Diaz-Peréz JL, Geerts ML, Goos M, Knobler R, et al: EORTC classification for primary cutaneous lymphomas: As proposal from the cutaneous lymphoma study group of the European organization for research and treatment of cancer. Blood. 90:354–371. 1997.PubMed/NCBI | |
Willemze R, Jaffe ES, Burg G, Cerroni L, Berti E, Swerdlow SH, Ralfkiaer E, Chimenti S, Diaz-Perez JL, Duncan LM, et al: WHO-EORTC classification for cutaneous lymphomas. Blood. 105:3768–3785. 2005. View Article : Google Scholar : PubMed/NCBI | |
Burg G, Kempf W, Cozzio A, Feit J, Willemze R, S Jaffe E, Dummer R, Berti E, Cerroni L, Chimenti S, et al: WHO/EORTC classification of cutaneous lymphomas 2005: Histological and molecular aspects. J Cutan Pathol. 32:647–674. 2005. View Article : Google Scholar : PubMed/NCBI | |
Girardi M, Heald PW and Wilson LD: The pathogenesis of mycosis fungoides. N Engl J Med. 350:1978–1988. 2004. View Article : Google Scholar : PubMed/NCBI | |
Manso R, Martínez-Magunacelaya N, Eraña-Tomás I, Monsalvez V, Rodríguez-Peralto JL, Ortiz-Romero PL, Santonja C, Cristóbal I, Piris MA and Rodríguez-Pinilla SM: Mycosis fungoides progression could be regulated by microRNAs. PLoS One. 13:e01984772018. View Article : Google Scholar : PubMed/NCBI | |
Criscione VD and Weinstock MA: Incidence of cutaneous T-cell lymphoma in the United States, 1973–2002. Arch Dermatol. 143:854–859. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hutchinson CB, Stoecker M, Wang FF, Papalas J, Sebastian S, Burchette J, Datto M and Wang E: Molecular detection of circulating Sezary cells in patients with mycosis fungoides: Could it predict future development of secondary Sezary syndrome? A single-institution experience. Leuk Lymphoma. 53:868–877. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wu XS, Lonsdorf AS and Hwang ST: Cutaneous T-cell lymphoma: Roles for chemokines and chemokine receptors. J Invest Dermatol. 129:1115–1119. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yamashita T, Abbade LP, Marques ME and Marques SA: Mycosis fungoides and Sezary syndrome: Clinical, histopathological and immunohistochemical review and update. An Bras Dermatol. 87:817–830. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yumeen S and Girardi M: Insights into the molecular and cellular underpinnings of cutaneous T cell lymphoma. Yale J Biol Med. 93:111–121. 2020.PubMed/NCBI | |
Prince HM, Whittaker S and Hoppe RT: How I treat mycosis fungoides and Sézary syndrome. Blood. 114:4337–4353. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wollina U: Cutaneous T cell lymphoma: Update on treatment. Int J Dermatol. 51:1019–1036. 2012. View Article : Google Scholar : PubMed/NCBI | |
Esche BA and Fitzpatrick PJ: Cutaneous malignant lymphoma. Int J Radiat Oncol Biol Phys. 12:2111–2115. 1986. View Article : Google Scholar : PubMed/NCBI | |
Zucca E and Cavalli F: Extranodal lymphomas. Ann Oncol. 11 (Suppl 3):S219–S222. 2000. View Article : Google Scholar | |
Sokołowska-Wojdyło M, Olek-Hrab K and Ruckemann-Dziurdzińska K: Primary cutaneous lymphomas: Diagnosis and treatment. Postepy Dermatol Alergol. 32:368–383. 2015. View Article : Google Scholar : PubMed/NCBI | |
Richter T, Nestler-Parr S, Babela R, Khan ZM, Tesoro T, Molsen E and Hughes DA; International Society for Pharmacoeconomics and Outcomes Research Rare Disease Special Interest Group, : Rare disease terminology and definitions-A systematic global review: Report of the ISPOR rare disease special interest group. Value Health. 18:906–914. 2015. View Article : Google Scholar : PubMed/NCBI | |
Orphanet, . Orphanet: An online rare disease and orphan drug data base. © INSERM 1999. simplehttp://www.orpha.net2019 | |
Okoye AA and Picker LJ: CD4(+) T-cell depletion in HIV infection: Mechanisms of immunological failure. Immunol Rev. 254:54–64. 2013. View Article : Google Scholar : PubMed/NCBI | |
Vidya Vijayan KK, Karthigeyan KP, Tripathi SP and Hanna LE: Pathophysiology of CD4+ T-Cell Depletion in HIV-1 and HIV-2 Infections. Front Immunol. 8:5802017. View Article : Google Scholar : PubMed/NCBI | |
Krejsgaard T, Odum N, Geisler C, Wasik MA and Woetmann A: Regulatory T cells and immunodeficiency in mycosis fungoides and Sézary syndrome. Leukemia. 26:424–432. 2012. View Article : Google Scholar : PubMed/NCBI | |
Heald P, Yan SL and Edelson R: Profound deficiency in normal circulating T cells in erythrodermic cutaneous T-cell lymphoma. Arch Dermatol. 130:198–203. 1994. View Article : Google Scholar : PubMed/NCBI | |
Coondoo A, Phiske M, Verma S and Lahiri K: Side-effects of topical steroids: A long overdue revisit. Indian Dermatol Online J. 5:416–425. 2014. View Article : Google Scholar : PubMed/NCBI | |
Farber EM, Abel EA and Cox AJ: Long-term risks of psoralen and UV-A therapy for psoriasis. Arch Dermatol. 119:426–431. 1983. View Article : Google Scholar : PubMed/NCBI | |
Farol LT and Hymes KB: Bexarotene: A clinical review. Expert Rev Anticancer Ther. 4:180–188. 2004. View Article : Google Scholar : PubMed/NCBI | |
Nurgali K, Jagoe RT and Abalo R: Editorial: Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? Front Pharmacol. 9:2452018. View Article : Google Scholar : PubMed/NCBI | |
Sleijfer S, Bannink M, Van Gool AR, Kruit WH and Stoter G: Side effects of interferon-alpha therapy. Pharm World Sci. 27:423–431. 2005. View Article : Google Scholar : PubMed/NCBI | |
Subramanian S, Bates SE, Wright JJ, Espinoza-Delgado I and Piekarz RL: Clinical toxicities of histone deacetylase inhibitors. Pharmaceuticals (Basel). 3:2751–2767. 2010. View Article : Google Scholar : PubMed/NCBI | |
Vidula N, Villa M, Helenowski IB, Jovanovic BD, Meagher R, Mehta J, Singhal S, Winter JN, Frankfurt O, Altman JK, et al: Adverse events during hematopoietic stem cell infusion: Analysis of the infusion product. Clin Lymphoma Myeloma Leuk. 15:e157–e162. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tsambiras PE, Patel S, Greene JN, Sandin RL and Vincent AL: Infectious complications of cutaneous T-cell lymphoma. Cancer Control. 8:185–188. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sharma RA, Gescher AJ and Steward WP: Curcumin: The story so far. Eur J Cancer. 41:1955–1968. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hsu CH and Cheng AL: Clinical studies with curcumin. Adv Exp Med Biol. 595:471–480. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Li B, Zhang X, Hazarika P, Aggarwal BB and Duvic M: Curcumin selectively induces apoptosis in cutaneous T-cell lymphoma cell lines and patients' PBMCs: Potential role for STAT-3 and NF-kappaB signaling. J Invest Dermatol. 130:2110–2119. 2010. View Article : Google Scholar : PubMed/NCBI | |
Khan MA, Gahlot S and Majumdar S: Oxidative stress induced by curcumin promotes the death of cutaneous T-cell lymphoma (HuT-78) by disrupting the function of several molecular targets. Mol Cancer Ther. 11:1873–1883. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yosifov DY, Kaloyanov KA, Guenova ML, Prisadashka K, Balabanova MB, Berger MR and Konstantinov SM: Alkylphosphocholines and curcumin induce programmed cell deathin cutaneous T-cell lymphoma cell lines. Leuk Res. 38:49–56. 2014. View Article : Google Scholar : PubMed/NCBI | |
Devaraj S, Jagannathan N and Neelakantan P: Antibiofilm efficacy of photoactivated curcumin, triple and double antibiotic paste, 2% chlorhexidine and calcium hydroxide against Enterococcus fecalis in vitro. Sci Rep. 6:247972016. View Article : Google Scholar : PubMed/NCBI | |
Trochopoulos A, Ivanov E, Yakub G, Rashkov I, Manolova N, Momekova D, Zaharieva MM, Najdenski H, Berger MR and Konstantinov S: Antineoplastic potential of curcumin loaded polymeric formulations against human malignant cells. Humboldt Union in Bulgaria; Sofia, Bulgaria: pp. 44–57. 2018 | |
Zaharieva MM, Kroumov AD, Dimitrova L, Tsvetkova I, Trochopoulos A, Konstantinov SM, Berger MR, Momchilova M, Yoncheva K and Najdenski HM: Micellar curcumin improves the antibacterial activity of the alkylphosphocholines erufosine and miltefosine against pathogenic Staphyloccocus aureus. Biotechnol Biotechnological Equip. 33:38–53. 2019. View Article : Google Scholar | |
Axelrod PI, Lorber B and Vonderheid EC: Infections complicating mycosis fungoide and sézary syndrome. JAMA. 267:1354–1358. 1992. View Article : Google Scholar : PubMed/NCBI | |
Bonin S, Tothova SM, Barbazza R, Brunetti D, Stanta G and Trevisan G: Evidence of multiple infectious agents in mycosis fungoides lesions. Exp Mol Pathol. 89:46–50. 2010. View Article : Google Scholar : PubMed/NCBI | |
Willerslev-Olsen A, Krejsgaard T, Lindahl LM, Bonefeld CM, Wasik MA, Koralov SB, Geisler C, Kilian M, Iversen L, Woetmann A and Odum N: Bacterial toxins fuel disease progression in cutaneous T-cell lymphoma. Toxins (Basel). 5:1402–1421. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kunwar A, Barik A, Pandey R and Priyadarsini KI: Transport of liposomal and albumin loaded curcumin to living cells: An absorption and fluorescence spectroscopic study. Biochim Biophys Acta. 1760:1513–1520. 2006. View Article : Google Scholar : PubMed/NCBI | |
Anand P, Kunnumakkara AB, Newman RA and Aggarwal BB: Bioavailability of curcumin: Problems and promises. Mol Pharm. 4:807–818. 2007. View Article : Google Scholar : PubMed/NCBI | |
Aggarwal BB, Sundaram C, Malani N and Ichikawa H: Curcumin: The Indian solid gold. Adv Exp Med Biol. 595:1–75. 2007. View Article : Google Scholar : PubMed/NCBI | |
Goel A, Kunnumakkara AB and Aggarwal BB: Curcumin as ‘Curecumin’: From kitchen to clinic. Biochem Pharmacol. 75:787–809. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mohanty C and Sanjeeb K: The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation. Biomaterials. 31:6597–6611. 2010. View Article : Google Scholar : PubMed/NCBI | |
Song Z, Feng R, Sun M, Guo C, Gao Y, Li L and Zhai G: Curcumin-loaded PLGA-PEG-PLGA triblock copolymeric micelles: Preparation, pharmacokinetics and distribution in vivo. J Colloid Interface Sci. 354:116–123. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li R, Qiao X, Li Q, He R, Ye M, Xiang C, Lin X and Guo D: Metabolic and pharmacokinetic studies of curcumin, demethoxycurcumin and bisdemethoxycurcumin in mice tumor after intragastric administration of nanoparticle formulations by liquid chromatography coupled with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 879:2751–2758. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yallapu MM, Jaggi M and Chauhan SC: Curcumin nanoformulations: A future nanomedicine for cancer. Drug Discov Today. 17:71–80. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jelezova I, Drakalska E, Momekova D, Shalimova N, Momekov G, Konstantinov S, Rangelov S and Pispas S: Curcumin loaded pH-sensitive hybrid lipid/block copolymer nanosized drug delivery systems. Eur J Pharm Sci. 78:67–78. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mehanny M, Hathout RM, Geneidi AS and Mansour S: Exploring the use of nanocarrier systems to deliver the magical molecule; Curcumin and its derivatives. J Control Release. 225:1–30. 2016. View Article : Google Scholar : PubMed/NCBI | |
Klement JF, Rice NR, Car BD, Abbondanzo SJ, Powers GD, Bhatt PH, Chen CH, Rosen CA and Stewart CL: IkappaBalpha deficiency results in a sustained NF-kappaB response and severe widespread dermatitis in mice. Mol Cell Biol. 16:2341–2349. 1996. View Article : Google Scholar : PubMed/NCBI | |
Mosmann T: Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods. 65:55–63. 1983. View Article : Google Scholar : PubMed/NCBI | |
Konstantinov SM, Eibl H and Berger MR: BCR-ABL influences the antileukaemic efficacy of alkylphosphocholines. Br J Haematol. 107:365–374. 1999. View Article : Google Scholar : PubMed/NCBI | |
Van Meerloo J, Kaspers GJ and Cloos J: Cell sensitivity assays: The MTT assay. Methods Mol Biol. 731:237–245. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254. 1976. View Article : Google Scholar : PubMed/NCBI | |
Schneider CA, Rasband WS and Eliceiri KW: NIH image to imageJ: 25 years of image analysis. Nat Methods. 9:671–675. 2012. View Article : Google Scholar : PubMed/NCBI | |
Abramoff MD, Magalhães PJ and Ram SJ: Image processing with ImageJ. Biophot Int. 11:36–42. 2004. | |
Swinehart DF: The Beer-Lambert Law. J Chem Educ. 39:3331962. View Article : Google Scholar | |
Hayden MS, West AP and Ghosh S: NF-kappaB and the immune response. Oncogene. 25:6758–6780. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Zhang L, Joo D and Sun SC: NF-κB signaling in inflammation. Signal Transduct Target Ther. 2:170232017. View Article : Google Scholar : PubMed/NCBI | |
Xia Y, Shen S and Verma IM: NF-κB, an active player in human cancers. Cancer Immunol Res. 2:823–830. 2014. View Article : Google Scholar : PubMed/NCBI | |
Baldwin AS: Regulation of cell death and autophagy by IKK and NF-κB: Critical mechanisms in immune function and cancer. Immunol Rev. 246:327–345. 2012. View Article : Google Scholar : PubMed/NCBI | |
Juvekar A, Manna S, Ramaswami S, Chang TP, Vu HY, Ghosh CC, Celiker MY and Vancurova I: Bortezomib induces nuclear translocation of IκBα resulting in gene-specific suppression of NF-κB-dependent transcription and induction of apoptosis in CTCL. Mol Cancer Res. 9:183–194. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kiessling MK, Klemke CD, Kaminski MM, Galani IE, Krammer PH and Gulow K: Inhibition of constitutively activated nuclear factor-kappaB induces reactive oxygen species- and iron-dependent cell death in cutaneous T-cell lymphoma. Cancer Res. 69:2365–2374. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sors A, Jean-Louis F, Pellet C, Laroche L, Dubertret L, Courtois G, Bachelez H and Michel L: Down-regulating constitutive activation of the NF-kappaB canonical pathway overcomes the resistance of cutaneous T-cell lymphoma to apoptosis. Blood. 107:2354–2363. 2006. View Article : Google Scholar : PubMed/NCBI | |
Call KM, Glaser T, Ito CY, Buckler AJ, Pelletier J, Haber DA, Rose EA, Kral A, Yeger H, Lewis WH, et al: Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus. Cell. 60:509–520. 1990. View Article : Google Scholar : PubMed/NCBI | |
Gessler M, Poustka A, Cavenee W, Neve RL, Orkin SH and Bruns GA: Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature. 343:774–778. 1990. View Article : Google Scholar : PubMed/NCBI | |
Huang A, Campbell CE, Bonetta L, McAndrews-Hill MS, Chilton-MacNeill S, Coppes MJ, Law DJ, Feinberg AP, Yeger H and Williams BR: Tissue, developmental, and tumor-specific expression of divergent transcripts in Wilms tumor. Science. 250:991–994. 1990. View Article : Google Scholar : PubMed/NCBI | |
Ujj Z, Buglyo G, Udvardy M, Vargha G, Biro S and Rejto L: WT1 overexpression affecting clinical outcome in non-hodgkin lymphomas and adult acute lymphoblastic leukemia. Pathol Oncol Res. 20:565–570. 2014. View Article : Google Scholar : PubMed/NCBI | |
Casalegno-Garduno R, Schmitt A, Spitschak A, Greiner J, Wang L, Hilgendorf I, Hirt C, Ho AD, Freund M and Schmitt M: Immune responses to WT1 in patients with AML or MDS after chemotherapy and allogeneic stem cell transplantation. Int J Cancer. 138:1792–1801. 2016. View Article : Google Scholar : PubMed/NCBI | |
Baudino TA: Targeted cancer therapy: The next generation of cancer treatment. Curr Drug Discov Technol. 12:3–20. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kumar M, Nagpal R, Hemalatha R, Verma V, Kumar A, Singh S, Marotta F, Jain S and Yadav H: Targeted cancer therapies: The future of cancer treatment. Acta Biomed. 83:220–233. 2012.PubMed/NCBI | |
Wraith DC: The future of immunotherapy: A 20-year perspective. Front Immunol. 8:16682017. View Article : Google Scholar : PubMed/NCBI | |
Yu Y and Cui J: Present and future of cancer immunotherapy: A tumor microenvironmental perspective. Oncol Lett. 16:4105–4113. 2018.PubMed/NCBI | |
Zhang H and Chen J: Current status and future directions of cancer immunotherapy. J Cancer. 9:1773–1781. 2018. View Article : Google Scholar : PubMed/NCBI | |
DiDonato JA, Mercurio F and Karin M: NF-κB and the link between inflammation and cancer. Immunol Rev. 246:379–400. 2012. View Article : Google Scholar : PubMed/NCBI | |
Godwin P, Baird AM, Heavey S, Barr MP, O'Byrne KJ and Gately K: Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front Oncol. 3:1202013. View Article : Google Scholar : PubMed/NCBI | |
Moore MM, Chua W, Charles KA and Clarke SJ: Inflammation and cancer: Causes and consequences. Clin Pharmacol Ther. 87:504–508. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hoesel B and Schmid JA: The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer. 12:862013. View Article : Google Scholar : PubMed/NCBI | |
Candoni A, Toffoletti E, Gallina R, Simeone E, Chiozzotto M, Volpetti S and Fanin R: Monitoring of minimal residual disease by quantitative WT1 gene expression following reduced intensity conditioning allogeneic stem cell transplantation in acute myeloid leukemia. Clin Transplant. 25:308–316. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nowakowska-Kopera A, Sacha T, Florek I, Zawada M, Czekalska S and Skotnicki AB: Wilms' tumor gene 1 expression analysis by real-time quantitative polymerase chain reaction for monitoring of minimal residual disease in acute leukemia. Leuk Lymphoma. 50:1326–1332. 2009. View Article : Google Scholar : PubMed/NCBI | |
Spassov BV, Stoimenov AS, Balatzenko GN, Genova ML, Peichev DB and Konstantinov SM: Wilms' tumor protein and FLT3-internal tandem duplication expression in patients with de novo acute myeloid leukemia. Hematology. 16:37–42. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hallberg B and Palmer RH: Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat Rev Cancer. 13:685–700. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wehkamp U, Oschlies I, Nagel I, Brasch J, Kneba M, Günther A, Klapper W and Weichenthal M: ALK-positive primary cutaneous T-cell-lymphoma (CTCL) with unusual clinical presentation and aggressive course. J Cutan Pathol. 42:870–877. 2015. View Article : Google Scholar : PubMed/NCBI | |
Stoica GE, Kuo A, Aigner A, Sunitha I, Souttou B, Malerczyk C, Caughey DJ, Wen D, Karavanov A, Riegel AT and Wellstein A: Identification of anaplastic lymphoma kinase as a receptor for the growth factor pleiotrophin. J Biol Chem. 276:16772–16779. 2001. View Article : Google Scholar : PubMed/NCBI | |
Patel VM, Flanagan CE, Martins M, Jones CL, Butler RM, Woollard WJ, Bakr FS, Yoxall A, Begum N, Katan M, et al: Frequent and persistent PLCG1 mutations in sezary cells directly enhance PLCү1 activity and stimulate NFKB, AP-1, and NFAT signaling. J Invest Dermatol. 140:380–389.e4. 2020. View Article : Google Scholar : PubMed/NCBI | |
Smith-Garvin JE, Koretzky GA and Jordan MS: T cell activation. Annu Rev Immunol. 27:591–619. 2009. View Article : Google Scholar : PubMed/NCBI | |
Vaque JP, Gomez-Lopez G, Monsalvez V, Varela I, Martínez N, Pérez C, Domínguez O, Graña O, Rodríguez-Peralto JL, Rodríguez-Pinilla SM, et al: PLCG1 mutations in cutaneous T-cell lymphomas. Blood. 123:2034–2043. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kiessling MK, Oberholzer PA, Mondal C, Karpova MB, Zipser MC, Lin WM, Girardi M, Macconaill LE, Kehoe SM, Hatton C, et al: High-throughput mutation profiling of CTCL samples reveals KRAS and NRAS mutations sensitizing tumors toward inhibition of the RAS/RAF/MEK signaling cascade. Blood. 117:2433–2440. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pérez C, González-Rincón J, Onaindia A, Almaráz C, García-Díaz N, Pisonero H, Curiel-Olmo S, Gómez S, Cereceda L, Madureira R, et al: Mutated JAK kinases and deregulated STAT activity are potential therapeutic targets in cutaneous T-cell lymphoma. Haematologica. 100:e450–e453. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rovedo MA, Krett NL and Rosen ST: Inhibition of glycogen synthase kinase-3 increases the cytotoxicity of enzastaurin. J Invest Dermatol. 131:1442–1449. 2011. View Article : Google Scholar : PubMed/NCBI | |
Balaji S, Ahmed M, Lorence E, Yan F, Nomie K and Wang M: NF-κB signaling and its relevance to the treatment of mantle cell lymphoma. J Hematol Oncol. 11:832018. View Article : Google Scholar : PubMed/NCBI | |
Merolle MI, Ahmed M, Nomie K and Wang ML: The B cell receptor signaling pathway in mantle cell lymphoma. Oncotarget. 9:25332–25341. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rosenthal A: Small molecule inhibitors in chronic lymphocytic lymphoma and B cell non-hodgkin lymphoma. Curr Hematol Malig Rep. 12:207–216. 2017. View Article : Google Scholar : PubMed/NCBI | |
Valla K, Flowers CR and Koff JL: Targeting the B cell receptor pathway in non-Hodgkin lymphoma. Expert Opin Investig Drugs. 27:513–522. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kim BS, Howell MD, Sun K, Papp K, Nasir A and Kuligowski ME; INCB 18424-206 Study Investigators, : Treatment of atopic dermatitis with ruxolitinib cream (JAK1/JAK2 inhibitor) or triamcinolone cream. J Allergy Clin Immunol. 145:572–582. 2020. View Article : Google Scholar : PubMed/NCBI | |
Owens S and Howell MD: Ruxolitinib cream suppresses Th2 inflammation in adult patients with atopic dermatitis. J Allergy Clin Immunol. 143:AB1282019. View Article : Google Scholar | |
Rosmarin D, Pandya AG, Lebwohl M, Grimes P, Hamzavi I, Gottlieb AB, Butler K, Kuo F, Sun K, Ji T, et al: Ruxolitinib cream for treatment of vitiligo: A randomised, controlled, phase 2 trial. Lancet. 396:110–120. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rothstein B, Joshipura D, Saraiya A, Abdat R, Ashkar H, Turkowski Y, Sheth V, Huang V, Au SC, Kachuk C, et al: Treatment of vitiligo with the topical Janus kinase inhibitor ruxolitinib. J Am Acad Dermatol. 76:1054–1060.e1. 2017. View Article : Google Scholar : PubMed/NCBI |