1
|
Zhou C, Zhu Y, Lu B, Zhao W and Zhao X:
Survivin expression modulates the sensitivity of A549 lung cancer
cells resistance to vincristine. Oncol Lett. 16:5466–5472.
2018.PubMed/NCBI
|
2
|
Chen Z, Wang J, Bai Y, Wang S, Yin X,
Xiang J, Li X, He M, Zhang X, Wu T, et al: The associations of
TERT-CLPTM1L variants and TERT mRNA expression with the prognosis
of early stage non-small cell lung cancer. Cancer Gene Ther.
24:20–27. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Joshi M, Ayoola A and Belani CP:
Small-cell lung cancer: An update on targeted. Adv Exp Med Bio.
779:385–404. 2013. View Article : Google Scholar
|
4
|
Carter BW, Halpenny DF, Ginsberg MS,
Papadimitrakopoulou VA and de Groot PM: Immunotherapy in non-small
cell lung cancer treatment: Current status and the role of imaging.
J Thorac Imaging. 32:300–312. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Li L, Sun Y, Feng M, Wang L and Liu J:
Clinical significance of blood-based miRNAs as biomarkers of
non-small cell lung cancer. Oncol Lett. 15:8915–8925.
2018.PubMed/NCBI
|
6
|
Lu J, Zhan Y, Feng J, Luo J and Fan S:
MicroRNAs associated with therapy of non-small cell lung cancer.
Int J Biol Sc. 14:390–397. 2018. View Article : Google Scholar
|
7
|
Guarize J, Bianchi F, Marino E, Belloni E,
Vecchi M, Donghi S, Lo Iacono G, Casadio C, Cuttano R, Barberis M,
et al: MicroRNA expression profile in primary lung cancer cells
lines obtained by endobronchial ultrasound transbronchial needle
aspiration. J Thorac Dis. 10:408–415. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Iqbal MA, Arora S, Prakasam G, Calin GA
and Syed MA: MicroRNA in lung cancer: Role, mechanisms, pathways
and therapeutic relevance. Mol Aspects Med. 70:3–20. 2019.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Seok H, Ham J, Jang ES and Chi SW:
MicroRNA Target Recognition: Insights from Transcriptome-Wide
Non-Canonical Interactions. Mol Cells. 39:375–381. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Isik M, Blackwell TK and Berezikov E:
MicroRNA mir-34 provides robustness to environmental stress
response via the DAF-16 network in C. elegans. Sci Rep.
6:367662016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wojciechowska A, Braniewska A and
Kozar-Kamińska K: MicroRNA in cardiovascular biology and disease.
Adv Clin Exp Med. 26:865–874. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tran N: Cancer Exosomes as miRNA
Factories. Trends Cancer. 2:329–331. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wang JK, Wang Z and Li G: MicroRNA-125 in
immunity and cancer. Cancer Lett. 454:134–145. 2019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Chen YL, Xu QP, Guo F and Guan WH:
MicroRNA-302d downregulates TGFBR2 expression and promotes
hepatocellular carcinoma growth and invasion. Exp Ther Med.
13:681–687. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
An X, Sarmiento C, Tan T and Zhu H:
Regulation of multidrug resistance by microRNAs in anti-cancer
therapy. Acta Pharm Sin B. 7:38–51. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Li Y, Li W, Zhang JG, Li HY and Li YM:
Downregulation of tumor suppressor menin by miR-421 promotes
proliferation and migration of neuroblastoma. Tumour Biol.
35:10011–10017. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Liu H, Gao Y, Song D, Liu T and Feng Y:
Correlation between microRNA-421 expression level and prognosis of
gastric cancer. Int J Clin Exp Pathol. 8:15128–15132.
2015.PubMed/NCBI
|
18
|
Wu J, Li G, Yao Y, Wang Z, Sun W and Wang
J: MicroRNA-421 is a new potential diagnosis biomarker with higher
sensitivity and specificity than carcinoembryonic antigen and
cancer antigen 125 in gastric cancer. Biomarkers. 20:58–63. 2015.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Yang P, Zhang M, Liu X and Pu H:
MicroRNA-421 promotes the proliferation and metastasis of gastric
cancer cells by targeting claudin-11. Exp Ther Med. 14:2625–2632.
2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ge X, Liu X, Lin F, Li P, Liu K, Geng R,
Dai C, Lin Y, Tang W, Wu Z, et al: MicroRNA-421 regulated by
HIF-1alpha promotes metastasis, inhibits apoptosis, and induces
cisplatin resistance by targeting E-cadherin and caspase-3 in
gastric cancer. Oncotarget. 7:24466–24482. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hu TB, Chen HS, Cao MQ, Guo FD, Cheng XY,
Han ZB and Li MQ: MicroRNA-421 inhibits caspase-10 expression and
promotes breast cancer progression. Neoplasma. 65:49–54. 2018.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Cinegaglia NC, Andrade SC, Tokar T,
Pinheiro M, Severino FE, Oliveira RA, Hasimoto EN, Cataneo DC,
Cataneo AJ, Defaveri J, et al: Integrative transcriptome analysis
identifies deregulated microRNA-transcription factor networks in
lung adenocarcinoma. Oncotarget. 7:28920–28934. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chen Z, Yu W, Zhou Q, Zhang J, Jiang H,
Hao D, Wang J, Zhou Z, He C and Xiao Z: A Novel lncRNA IHS promotes
tumor proliferation and metastasis in HCC by Regulating the ERK-
and AKT/GSK-3β-Signaling Pathways. Mol Ther Nucleic Acids.
16:707–720. 2019. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kim SA, Kang OH and Kwon DY:
Cryptotanshinone Induces Cell Cycle Arrest and Apoptosis of NSCLC
Cells through the PI3K/Akt/GSK-3β Pathway. Int J Mol Sci.
19:27392018. View Article : Google Scholar
|
25
|
Chen Y, Liu X, Wang H, Liu S, Hu N and Li
X: Akt regulated phosphorylation of GSK-3β/Cyclin D1, p21 and p27
contributes to cell proliferation through cell cycle progression
from G1 to S/G2M Phase in low-dose arsenite exposed HaCat cells.
Front Pharmacol. 10:11762019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Coomans de Brachene A and Demoulin JB:
FOXO transcription factors in cancer development and therapy. Cell
Mol Life Sci. 73:1159–1172. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chen D, Yang Y and Yang P: Quxie capsule
inhibits colon tumor growth partially through foxo1-mediated
apoptosis and immune modulation. Integr Cancer Ther.
18:15347354198463772019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
29
|
van Tonder A, Joubert AM and Cromarty AD:
Limitations of the
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide
(MTT) assay when compared to three commonly used cell enumeration
assays. BMC Res Notes. 8:472015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Riffo-Campos AL, Riquelme I and
Brebi-Mieville P: Tools for sequence-based miRNA target prediction:
What to choose? Int J Mol Sci. 17:19872016. View Article : Google Scholar
|
31
|
Xie D, Shang C, Zhang H, Guo Y and Tong X:
Up-regulation of miR-9 target CBX7 to regulate invasion ability of
bladder transitional cell carcinoma. Med Sci Monit. 21:225–230.
2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zuryn A, Litwiniec A, Gagat M, Drzewucka
J, Gackowska L and Grzanka A: The influence of arsenic trioxide on
the cell cycle, apoptosis and expression of cyclin D1 in the Jurkat
cell line. Acta Histochem. 116:1350–1358. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Gongpan P, Lu Y, Wang F, Xu Y and Xiong W:
AS160 controls eukaryotic cell cycle and proliferation by
regulating the CDK inhibitor p21. Cell cycle (Georgetown Tex.).
15:1733–1741. 2016. View Article : Google Scholar
|
34
|
Fukuda Y, Kanbe M, Watanabe M, Dan K,
Matsuzaki K, Kitanaka S and Miyata S: 3EZ,20Ac-ingenol, a catalytic
inhibitor of topoisomerases, downregulates p-Akt and induces DSBs
and apoptosis of DT40 cells. Arch Pharm Res. 36:1029–1038. 2013.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Mao Z, Zhou J, Luan J, Sheng W, Shen X and
Dong X: Tamoxifen reduces P-gp-mediated multidrug resistance via
inhibiting the PI3K/Akt signaling pathway in ER-negative human
gastric cancer cells. Biomed Pharmacother. 68:179–183. 2014.
View Article : Google Scholar : PubMed/NCBI
|