1
|
Castillejos-Molina RA and
Gabilondo-Navarro FB: Prostate cancer. Salud Publica Mex.
58:279–284. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Pu YS, Chiang HS, Lin CC, Huang CY, Huang
KH and Chen J: Changing trends of prostate cancer in Asia. Aging
Male. 7:120–132. 2004. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kimura T and Egawa S: Epidemiology of
prostate cancer in Asian countries. Int J Urol. 25:524–531. 2018.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Ferlay J, Soerjomataram I, Dikshit R, Eser
S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer
incidence and mortality worldwide: Sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Perdana NR, Mochtar CA, Umbas R and Hamid
AR: The risk factors of prostate cancer and its prevention: A
literature review. Acta Med Indones. 48:228–238. 2016.PubMed/NCBI
|
7
|
Redman JM, Gulley JL and Madan RA:
Combining immunotherapies for the treatment of prostate cancer.
Urol Oncol. 35:694–700. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Gasnier A and Parvizi N: Updates on the
diagnosis and treatment of prostate cancer. Br J Radiol.
90:201701802017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Powell Gray B, Kelly L, Ahrens DP, Barry
AP, Kratschmer C, Levy M and Sullenger BA: Tunable cytotoxic
aptamer-drug conjugates for the treatment of prostate cancer. Proc
Natl Acad Sci USA. 115:4761–4766. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rupaimoole R, Calin GA, Lopez-Berestein G
and Sood AK: miRNA deregulation in cancer cells and the tumor
microenvironment. Cancer Discov. 6:235–246. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Esquela-Kerscher A and Slack FJ:
Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer.
6:259–269. 2006. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Markou A, Zavridou M and Lianidou ES:
miRNA-21 as a novel therapeutic target in lung cancer. Lung Cancer
(Auckl). 7:19–27. 2016.PubMed/NCBI
|
13
|
Wu HM and Kim SG: miRNA-324, a potential
therapeutic target for paracetamol-induced liver injury. Stem Cell
Investig. 3:672016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Chen JY, Xu LF, Hu HL, Wen YQ, Chen D and
Liu WH: miRNA-215-5p alleviates the metastasis of prostate cancer
by targeting PGK1. Eur Rev Med Pharmacol Sci. 24:639–646.
2020.PubMed/NCBI
|
15
|
Zhang X and Wu J: Prognostic role of
microRNA-145 in prostate cancer: A systems review and
meta-analysis. Prostate Int. 3:71–74. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Long M, Zhan M, Xu S, Yang R, Chen W,
Zhang S, Shi Y, He Q, Mohan M, Liu Q and Wang J: miR-92b-3p acts as
a tumor suppressor by targeting Gabra3 in pancreatic cancer. Mol
Cancer. 16:1672017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ma H, Wang LY, Yang RH, Zhou Y, Zhou P and
Kong L: Identification of reciprocal microRNA-mRNA pairs associated
with metastatic potential disparities in human prostate cancer
cells and signaling pathway analysis. J Cell Biochem.
120:17779–17790. 2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Epstein JI, Egevad L, Amin MB, Delahunt B,
Srigley JR and Humphrey PA; Grading Committee, : The 2014
international society of urological pathology (ISUP) consensus
conference on gleason grading of prostatic carcinoma: Definition of
grading patterns and proposal for a new grading system. Am J Surg
Pathol. 40:244–252. 2016.PubMed/NCBI
|
19
|
Singletary SE, Allred C, Ashley P, Bassett
LW, Berry D, Bland KI, Borgen PI, Clark GM, Edge SB, Hayes DF, et
al: Staging system for breast cancer: Revisions for the 6th edition
of the AJCC cancer staging manual. Surg Clin North Am. 83:803–819.
2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhao Y, Song Y, Yao L, Song G and Teng C:
Circulating microRNAs: Promising biomarkers involved in several
cancers and other diseases. DNA Cell Biol. 36:77–94. 2017.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Steinberg BA and Fang JC: Long-term
outcomes of acute heart failure: Where are we now? J Am Coll
Cardiol. 70:2487–2489. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhao L, Yu H, Yi S, Peng X, Su P, Xiao Z,
Liu R, Tang A, Li X, Liu F and Shen S: The tumor suppressor
miR-138-5p targets PD-L1 in colorectal cancer. Oncotarget.
7:45370–45384. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wang L, Li B, Zhang L, Li Q, He Z, Zhang
X, Huang X, Xu Z, Xia Y, Zhang Q, et al: miR-664a-3p functions as
an oncogene by targeting Hippo pathway in the development of
gastric cancer. Cell Prolif. 52:e125672019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Gong M, Chen C, Zhao H, Sun M and Song M:
miR-506 suppresses cervical cancer cell proliferation both in vitro
and in vivo. Neoplasma. 65:331–338. 2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang Y, Zhang D, Lv J, Wang S and Zhang
Q: miR-410-3p promotes prostate cancer progression via regulating
PTEN/AKT/mTOR signaling pathway. Biochem Biophys Res Commun.
503:2459–2465. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kachakova D, Mitkova A, Popov E, Popov I,
Vlahova A, Dikov T, Christova S, Mitev V, Slavov C and Kaneva R:
Combinations of serum prostate-specific antigen and plasma
expression levels of let-7c, miR-30c, miR-141, and miR-375 as
potential better diagnostic biomarkers for prostate cancer. DNA
Cell Biol. 34:189–200. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Li C, Huo B, Wang Y and Cheng C:
Downregulation of microRNA-92b-3p suppresses proliferation,
migration, and invasion of gastric cancer SGC-7901 cells by
targeting Homeobox D10. J Cell Biochem. 120:17405–17412. 2019.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Gong L, Ren M, Lv Z, Yang Y and Wang Z:
miR-92b-3p promotes colorectal carcinoma cell proliferation,
invasion, and migration by inhibiting FBXW7 in vitro and in vivo.
DNA Cell Biol. 37:501–511. 2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Arisan ED, Rencuzogullari O, Freitas IL,
Radzali S, Keskin B, Kothari A, Warford A and Uysal-Onganer P:
Upregulated Wnt-11 and miR-21 expression trigger epithelial
mesenchymal transition in aggressive prostate cancer cells. Biology
(Basel). 9:522020.
|
31
|
Krebs M, Solimando AG, Kalogirou C,
Marquardt A, Frank T, Sokolakis I, Hatzichristodoulou G, Kneitz S,
Bargou R, Kübler H, et al: miR-221-3p regulates VEGFR2 expression
in high-risk prostate cancer and represents an escape mechanism
from sunitinib in vitro. J Clin Med. 9:6702020. View Article : Google Scholar
|
32
|
Zheng C, Guo K, Chen B, Wen Y and Xu Y:
miR-214-5p inhibits human prostate cancer proliferation and
migration through regulating CRMP5. Cancer Biomark. 26:193–202.
2019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hidayat M, Mitsuishi Y, Takahashi F,
Tajima K, Yae T, Miyahara K, Hayakawa D, Winardi W, Ihara H,
Koinuma Y, et al: Role of FBXW7 in the quiescence of
gefitinib-resistant lung cancer stem cells in EGFR-mutant non-small
cell lung cancer. Bosn J Basic Med Sci. 19:355–367. 2019.PubMed/NCBI
|
34
|
Xiao G, Li Y, Wang M, Li X, Qin S, Sun X,
Liang R, Zhang B, Du N, Xu C, et al: FBXW7 suppresses
epithelial-mesenchymal transition and chemo-resistance of
non-small-cell lung cancer cells by targeting snai1 for
ubiquitin-dependent degradation. Cell Prolif. 51:e124732018.
View Article : Google Scholar : PubMed/NCBI
|