Molecular characteristics of uveal melanoma and intraocular tumors (Review)
- Authors:
- Periklis Katopodis
- Mohammad S. Khalifa
- Vladimir Anikin
-
Affiliations: College of Health, Medicine and Life Sciences, Brunel University, Uxbridge, London UB8 3PH, UK - Published online on: November 3, 2020 https://doi.org/10.3892/ol.2020.12270
- Article Number: 9
-
Copyright: © Katopodis et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Krantz BA, Dave N, Komatsubara KM, Marr BP and Carvajal RD: Uveal melanoma: Epidemiology, etiology, and treatment of primary disease. Clin Ophthalmol. 11:279–289. 2017. View Article : Google Scholar : PubMed/NCBI | |
Brantley MA Jr and Harbour JW: Deregulation of the Rb and p53 pathways in uveal melanoma. Am J Pathol. 157:1795–1801. 2000. View Article : Google Scholar : PubMed/NCBI | |
Weber A, Hengge UR, Urbanik D, Markwart A, Mirmohammadsaegh A, Reichel MB, Wittekind C, Wiedemann P and Tannapfel A: Absence of mutations of the BRAF gene and constitutive activation of extracellular-regulated kinase in malignant melanomas of the uvea. Lab Invest. 83:1771–1776. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kuk D, Shoushtari AN, Barker CA, Panageas KS, Munhoz RR, Momtaz P, Ariyan CE, Brady MS, Coit DG, Bogatch K, et al: Prognosis of mucosal, uveal, acral, nonacral cutaneous, and unknown primary melanoma from the time of first metastasis. Oncologist. 21:848–854. 2016. View Article : Google Scholar : PubMed/NCBI | |
Andreoli MT, Mieler WF and Leiderman YI: Epidemiological trends in uveal melanoma. Br J Ophthalmol. 99:1550–1553. 2015. View Article : Google Scholar : PubMed/NCBI | |
Damato EM and Damato BE: Detection and time to treatment of uveal melanoma in the United Kingdom: An evaluation of 2,384 patients. Ophthalmology. 119:1582–1589. 2012. View Article : Google Scholar : PubMed/NCBI | |
McLaughlin CC, Wu X, Jemal A, Martin HJ, Roche LM and Chen VW: Incidence of Noncutaneous Melanomas in the U.S. Cancer. 103:1000–1007. 2005. View Article : Google Scholar : PubMed/NCBI | |
Virgili G, Gatta G, Ciccolallo L, Capocaccia R, Biggeri A, Crocetti E, Lutz JM and Paci E; EUROCARE Working Group, : Incidence of uveal melanoma in Europe. Ophthalmology. 114:2309–2315. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hu DN, Yu GP, Mccormick SA, Schneider S and Finger PT: Population-based incidence of uveal melanoma in various races and ethnic groups. Am J Ophthalmol. 140:612–617. 2005. View Article : Google Scholar : PubMed/NCBI | |
Nayman T, Bostan C, Logan P and Burnier MN Jr: Uveal melanoma risk factors: A systematic review of meta-analyses. Curr Eye Res. 42:1085–1093. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kaliki S, Shields CL and Shields JA: Uveal melanoma: Estimating prognosis. Indian J Ophthalmol. 63:93–102. 2015. View Article : Google Scholar : PubMed/NCBI | |
Weis E, Shah CP, Lajous M, Shields JA and Shields CL: The association of cutaneous and iris nevi with uveal melanoma: A meta-analysis. Ophthalmology. 116:536–543.e2. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gendron P, Desgarnier MD, Mallet JD and Rochette PJ: Implication of ultraviolet light in the etiology of uveal melanoma (Review). Photochem Photobiol. 90:15–21. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mallet JD and Rochette PJ: Themed issue: Interaction of UV radiation with DNA. Photochem Photobiol Sci. 12:1245–1246. 2013. | |
Mallet JD, Gendron SP, Drigeard Desgarnier MC and Rochettes PJ: Implication of ultraviolet light in the etiology of uveal melanoma: A review. Photochem Photobiol. 90:15–21. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shields CL, Materin MA, Shields JA, Gershenbaum E, Singh sAD and Smith A: Factors associated with elevated intraocular pressure in eyes with iris melanoma. Br J Ophthalmol. 85:666–669. 2001. View Article : Google Scholar : PubMed/NCBI | |
Onken MD, Worley LA, Char DH, Augsburger JJ, Correa ZM, Nudleman E, Aaberg TM Jr, Altaweel MM, Bardenstein DS, Finger PT, et al: Collaborative Ocular Oncology Group report number 1: prospective validation of a multi-gene prognostic assay in uveal melanoma. Ophthalmology. 119:1596–1603. 2012. View Article : Google Scholar : PubMed/NCBI | |
Coupland SE, Lake SL, Zeschnigk M and Damato BE: Molecular pathology of uveal melanoma. Eye (Lond). 27:230–242. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sisley K, Rennie IG, Parsons MA, Jacques R, Hammond DW, Bell SM, Potter AM and Rees RC: Abnormalities of chromosomes 3 and 8 in posterior uveal melanoma correlate with prognosis. Genes Chromosomes Cancer. 19:22–28. 1997. View Article : Google Scholar : PubMed/NCBI | |
Versluis M, de Lange MJ, van Pelt SI, Ruivenkamp CA, Kroes WG, Cao J, Jager MJ, Luyten GP and van der Velden PA: Digital PCR validates 8q dosage as prognostic tool in uveal melanoma. PLoS One. 10:e01163712015. View Article : Google Scholar : PubMed/NCBI | |
Harbour JW, Onken MD, Roberson EDO, Duan S, Cao L, Worley LA, Council ML, Matatall KA, Helms C and Bowcock AM: Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 330:1410–1413. 2010. View Article : Google Scholar : PubMed/NCBI | |
Laíns I, Bartosch C, Mondim V, Healy B, Kim IK, Husain D and Miller JW: Second primary neoplasms in patients with uveal melanoma: A SEER Database Analysis. Am J Ophthalmol. 165:54–64. 2016. View Article : Google Scholar : PubMed/NCBI | |
van der Weyden L and Adams DJ: The Ras-association domain family (RASSF) members and their role in human tumourigenesis. Biochim Biophys Acta. 1776:58–85. 2007.PubMed/NCBI | |
Babchia N, Calipel A, Mouriaux F, Faussat AM and Mascarelli F: The PI3K/Akt and mTOR/P70S6K signaling pathways in human uveal melanoma cells: Interaction with B-Raf/ERK. Invest Ophthalmol Vis Sci. 51:421–429. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rodríguez A, Dueñas-Gonzalez A and Delgado-Pelayo S: Clinical presentation and management of uveal melanoma. Mol Clin Oncol. 5:675–677. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ewens KG, Kanetsky PA, Richards-yutz J, Al-Dahmash S, De Luca MC, Bianciotto CG, Shields CL and Ganguly A: Genomic profile of 320 uveal melanoma cases: Chromosome 8p-loss and metastatic outcome. Invest Ophthalmol Vis Sci. 54:5721–5729. 2013. View Article : Google Scholar : PubMed/NCBI | |
van Gils W, Mensink HW, Kilic E, Vaarwater J, Verbiest MM, Paridaens D, Luyten GP, de Klein A and Brüggenwirth HT: Expression of APITD1 is not related to copy number changes of chromosomal region 1p36 or the prognosis of uveal melanoma. Invest Ophthalmol Vis Sci. 48:4919–4923. 2007. View Article : Google Scholar : PubMed/NCBI | |
van Gils W, Kilic E, Brüggenwirth HT, Vaarwater J, Verbiest MM, Beverloo B, van Til-Berg ME, Paridaens D, Luyten GP and de Klein A: Regional deletion and amplification on chromosome 6 in a uveal melanoma case without abnormalities on chromosomes 1p, 3 and 8. Melanoma Res. 18:10–15. 2008. View Article : Google Scholar : PubMed/NCBI | |
Parrella P, Sidransky D and Merbs SL: Allelotype of posterior uveal melanoma: Implications for a bifurcated tumor progression pathway. Cancer Res. 59:3032–3037. 1999.PubMed/NCBI | |
Tschentscher F, Hüsing J, Hölter T, Kruse E, Dresen IG, Jöckel KH, Anastassiou G, Schilling H, Bornfeld N, Horsthemke B, et al: Tumor classification based on gene expression profiling shows that uveal melanomas with and without monosomy 3 represent two distinct entities. Cancer Res. 63:2578–2584. 2003.PubMed/NCBI | |
Harbour JW: The genetics of uveal melanoma: An emerging framework for targeted therapy. Pigment Cell Melanoma Res. 25:171–181. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kim JW, Choi EJ and Joe CO: Activation of death-inducing signaling complex (DISC) by pro-apoptotic C-terminal fragment of RIP. Oncogene. 19:4491–4499. 2000. View Article : Google Scholar : PubMed/NCBI | |
Tummers B and Green DR: Caspase-8: Regulating life and death. Immunol Rev. 277:76–89. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wong RSY: Apoptosis in cancer: From pathogenesis to treatment. J Exp Clin Cancer Res. 30:872011. View Article : Google Scholar : PubMed/NCBI | |
Wang RA, Li QL, Li ZS, Zheng PJ, Zhang HZ, Huang XF, Chi SM, Yang AG and Cui R: Apoptosis drives cancer cells proliferate and metastasize. J Cell Mol Med. 17:205–211. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pistritto G, Trisciuoglio D, Ceci C, Garufi A and D'Orazi G: Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY). 8:603–619. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wiman KG: Strategies for therapeutic targeting of the p53 pathway in cancer. Cell Death Differ. 13:921–926. 2006. View Article : Google Scholar : PubMed/NCBI | |
Parrish AB, Freel CD and Kornbluth S: Cellular mechanisms controlling caspase activation and function. Cold Spring Harb Perspect Biol. 5:52013. View Article : Google Scholar | |
Cancer Genome Atlas Network, . Genomic Classification of cutaneous melanoma. Cell. 161:1681–1696. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kalinec G, Nazarali AJ, Hermouet S, Xu N and Gutkind JS: Mutated alpha subunit of the Gq protein induces malignant transformation in NIH 3T3 cells. Mol Cell Biol. 12:4687–4693. 1992. View Article : Google Scholar : PubMed/NCBI | |
Urtatiz O and Van Raamsdonk CD: Gnaq and Gna11 in the endothelin signaling pathway and melanoma. Front Genet. 7:592016. View Article : Google Scholar : PubMed/NCBI | |
Croce M, Ferrini S, Pfeffer U and Gangemi R: Targeted therapy of uveal melanoma: Recent failures and new perspectives. Cancers (Basel). 11:8462019. View Article : Google Scholar | |
Rozengurt E: Mitogenic signaling pathways induced by G protein-coupled receptors. J Cell Physiol. 213:589–602. 2007. View Article : Google Scholar : PubMed/NCBI | |
Landreville S, Agapova OA and Harbour JW: Emerging insights into the molecular pathogenesis of uveal melanoma. Future Oncol. 4:629–636. 2008. View Article : Google Scholar : PubMed/NCBI | |
Van Raamsdonk CD, Bezrookove V, Green G, Bauer J, Gaugler L, O'Brien JM, Simpson EM, Barsh GS and Bastian BC: Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature. 457:599–602. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ceraudo E, Horioka M, Mattheisen J, Hitchman TD, Moore AR, Kazmi MA, Chi P, Chen Y, Sakmar TP and Huber T: Uveal melanoma oncogene CYSLTR2 encodes a constitutively active GPCR highly biased toward Gq signaling. bioRxiv. Jun 6–2019.(Epub ahead of print). doi: org/10.1101/663153. | |
Chua V, Lapadula D, Randolph C, Benovic JL, Wedegaertner PB and Aplin AE: Dysregulated GPCR signaling and therapeutic options in uveal melanoma. Mol Cancer Res. 15:501–506. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pandiani C, Béranger GE, Leclerc J, Ballotti R and Bertolotto C: Focus on cutaneous and uveal melanoma specificities. Genes Dev. 31:724–743. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zenonos K and Kyprianou K: RAS signaling pathways, mutations and their role in colorectal cancer. World J Gastrointest Oncol. 5:97–101. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zuidervaart W, van Nieuwpoort F, Stark M, Dijkman R, Packer L, Borgstein AM, Pavey S, van der Velden P, Out C, Jager MJ, et al: Activation of the MAPK pathway is a common event in uveal melanomas although it rarely occurs through mutation of BRAF or RAS. Br J Cancer. 92:2032–2038. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fernández-Medarde A and Santos E: Ras in cancer and developmental diseases. Genes Cancer. 2:344–358. 2011. View Article : Google Scholar : PubMed/NCBI | |
Prior IA, Lewis PD and Mattos C: A comprehensive survey of Ras mutations in cancer. Cancer Res. 72:2457–2467. 2012. View Article : Google Scholar : PubMed/NCBI | |
Muñoz-Maldonado C, Zimmer Y and Medová M: A comparative analysis of individual RAS mutations in cancer biology. Front Oncol. 9:10882019. View Article : Google Scholar : PubMed/NCBI | |
Mooy CM, Van der Helm MJ, Van der Kwast TH, De Jong PT, Ruiter DJ and Zwarthoff EC: No N-ras mutations in human uveal melanoma: The role of ultraviolet light revisited. Br J Cancer. 64:411–413. 1991. View Article : Google Scholar : PubMed/NCBI | |
Soparker CN, O'Brien JM and Albert DM: Investigation of the role of the ras protooncogene point mutation in human uveal melanomas. Invest Ophthalmol Vis Sci. 34:2203–2209. 1993.PubMed/NCBI | |
Wennerberg K, Rossman KL and Der CJ: The Ras superfamily at a glance. J Cell Sci. 118:843–846. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kolch W: Meaningful relationships: The regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J. 351:289–305. 2000. View Article : Google Scholar : PubMed/NCBI | |
Castellano E and Downward J: RAS interaction with PI3K: More than just another effector pathway. Genes Cancer. 2:261–274. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu P, Cheng H, Roberts TM and Zhao JJ: Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 8:627–644. 2009. View Article : Google Scholar : PubMed/NCBI | |
O'Donnell JS, Massi D, Teng MW and Mandala M: PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux. Semin Cancer Biol. 48:91–103. 2018. View Article : Google Scholar : PubMed/NCBI | |
Saraiva VS, Caissie AL, Segal L, Edelstein C and Burnier MN Jr: Immunohistochemical expression of phospho-Akt in uveal melanoma. Melanoma Res. 15:245–250. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S and Reed JC: Regulation of cell death protease caspase-9 by phosphorylation. Science. 282:1318–1321. 1998. View Article : Google Scholar : PubMed/NCBI | |
Milella M, Falcone I, Conciatori F, Cesta Incani U, Del Curatolo A, Inzerilli N, Nuzzo CM, Vaccaro V, Vari S, Cognetti F, et al: PTEN: Multiple functions in human malignant tumors. Front Oncol. 5:242015. View Article : Google Scholar : PubMed/NCBI | |
Chang H, Cai Z and Roberts TM: The mechanisms underlying PTEN loss in human tumors suggest potential therapeutic opportunities. Biomolecules. 9:7132019. View Article : Google Scholar | |
Woodman SE: Metastatic uveal melanoma: Biology and emerging treatments. Cancer J. 18:148–152. 2012. View Article : Google Scholar : PubMed/NCBI | |
Abdel-Rahman MH, Yang Y, Zhou XP, Craig EL, Davidorf FH and Eng C: High frequency of submicroscopic hemizygous deletion is a major mechanism of loss of expression of PTEN in uveal melanoma. J Clin Oncol. 24:288–295. 2006. View Article : Google Scholar : PubMed/NCBI | |
Dhillon AS, Hagan S, Rath O and Kolch W: MAP kinase signalling pathways in cancer. Oncogene. 26:3279–3290. 2007. View Article : Google Scholar : PubMed/NCBI | |
Burotto M, Chiou VL, Lee JM and Kohn EC: The MAPK pathway across different malignancies: A new perspective. Cancer. 120:3446–3456. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cohen C, Zavala-Pompa A, Sequeira JH, Shoji M, Sexton DG, Cotsonis G, Cerimele F, Govindarajan B, Macaron N and Arbiser JL: Mitogen-actived protein kinase activation is an early event in melanoma progression. Clin Cancer Res. 8:3728–3733. 2002.PubMed/NCBI | |
Leicht DT, Balan V, Kaplun A, Singh-Gupta V, Kaplun L, Dobson M and Tzivion G: Raf kinases: Function, regulation and role in human cancer. Biochim Biophys Acta. 1773:1196–1212. 2007. View Article : Google Scholar : PubMed/NCBI | |
Barras D: BRAF mutation in colorectal cancer: An update. Biomark Cancer. 7 (Suppl 1):9–12. 2015.PubMed/NCBI | |
Zaman A, Wu W and Bivona TG: Targeting oncogenic BRAF: Past, present, and future. Cancers (Basel). 11:11972019. View Article : Google Scholar | |
Gaudi S and Messina JL: Molecular bases of cutaneous and uveal melanomas. Pathol Res Int. 2011:1594212011. View Article : Google Scholar | |
Glitza IC and Davies MA: Genotyping of cutaneous melanoma. Chin Clin Oncol. 3:272014.PubMed/NCBI | |
Brose MS, Volpe P, Feldman M, Kumar M, Rishi I, Gerrero R, Einhorn E, Herlyn M, Minna J, Nicholson A, et al: Mutations in Human Lung Cancer and Melanoma. Cancer Res. 62:6997–7000. 2002.PubMed/NCBI | |
Shinozaki M, Fujimoto A, Morton DL and Hoon DS: Incidence of BRAF oncogene mutation and clinical relevance for primary cutaneous melanomas. Clin Cancer Res. 10:1753–1757. 2004. View Article : Google Scholar : PubMed/NCBI | |
Harbour JW: Genomic, prognostic, and cell-signaling advances in uveal melanoma. Am Soc Clin Oncol Educ book Am Soc Clin Oncol Annu Meet. 2013:388–391. 2013. View Article : Google Scholar | |
Mooy CM, Luyten GP, de Jong PT, Luider TM, Stijnen T, van de Ham F, van Vroonhoven CC and Bosman FT: Immunohistochemical and prognostic analysis of apoptosis and proliferation in uveal melanoma. Am J Pathol. 147:1097–1104. 1995.PubMed/NCBI | |
Merhavi E, Cohen Y, Avraham BC, Frenkel S, Chowers I, Pe'er J and Goldenberg-Cohen N: Promoter methylation status of multiple genes in uveal melanoma. Invest Ophthalmol Vis Sci. 48:4403–4406. 2007. View Article : Google Scholar : PubMed/NCBI | |
Shivakumar L, Minna J, Sakamaki T, Pestell R and White MA: The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin D1 accumulation. Mol Cell Biol. 22:4309–4318. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kiliç E, Brüggenwirth HT, Verbiest MM, Zwarthoff EC, Mooy NM, Luyten GP and de Klein A: The RAS-BRAF kinase pathway is not involved in uveal melanoma. Melanoma Res. 14:203–205. 2004. View Article : Google Scholar : PubMed/NCBI | |
Helgadottir H and Höiom V: The genetics of uveal melanoma: Current insights. Appl Clin Genet. 9:147–155. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Du S, Lei T, Wang H, He X, Tong R and Wang Y: Multifaceted regulation and functions of YAP/TAZ in tumors (Review). Oncol Rep. 40:16–28. 2018.PubMed/NCBI | |
Meng Z, Moroishi T and Guan KL: Mechanisms of Hippo pathway regulation. Genes Dev. 30:1–17. 2016. View Article : Google Scholar : PubMed/NCBI | |
Plouffe SW, Hong AW and Guan KL: Disease implications of the Hippo/YAP pathway. Trends Mol Med. 21:212–222. 2015. View Article : Google Scholar : PubMed/NCBI | |
Totaro A, Panciera T and Piccolo S: YAP/TAZ upstream signals and downstream responses. Nat Cell Biol. 20:888–899. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gumbiner BM and Kim NG: The Hippo-YAP signaling pathway and contact inhibition of growth. J Cell Sci. 127:709–717. 2014. View Article : Google Scholar : PubMed/NCBI | |
Field MG and Harbour JW: GNAQ/11 mutations in uveal melanoma: Is YAP the key to targeted therapy? Cancer Cell. 25:714–715. 2014. View Article : Google Scholar : PubMed/NCBI | |
Feng X, Degese MS, Iglesias-Bartolome R, Vaque JP, Molinolo AA, Rodrigues M, Zaidi MR, Ksander BR, Merlino G, Sodhi A, et al: Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell. 25:831–845. 2014. View Article : Google Scholar : PubMed/NCBI | |
Warren JS, Xiao Y and Lamar JM: YAP/TAZ activation as a target for treating metastatic Cancer. Cancers (Basel). 10:102018. View Article : Google Scholar | |
Zanconato F, Battilana G, Cordenonsi M and Piccolo S: YAP/TAZ as therapeutic targets in cancer. Curr Opin Pharmacol. 29:26–33. 2016. View Article : Google Scholar : PubMed/NCBI | |
Moroishi T, Hansen CG and Guan KL: The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer. 15:73–79. 2015. View Article : Google Scholar : PubMed/NCBI | |
Feng X, Rigiracciolo D, Lee JS, Yeerna H, Arang N, Lubrano S, Schlaepfer DD, Tamayo P, Ruppin E and Gutkind JS: Abstract 968: Targeting FAK inhibits YAP-dependent tumor growth in uveal melanoma. Cancer Res. 78:9682018. | |
Liu H and Zhou M: Evaluation of p53 gene expression and prognosis characteristics in uveal melanoma cases. OncoTargets Ther. 10:3429–3434. 2017. View Article : Google Scholar | |
Hajkova N, Hojny J, Nemejcova K, Dundr P, Ulrych J, Jirsova K, Glezgova J and Ticha I: Germline mutation in the TP53 gene in uveal melanoma. Sci Rep. 8:76182018. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Tran BN, Worley LA, Delston RB and Harbour JW: Functional analysis of the p53 pathway in response to ionizing radiation in uveal melanoma. Invest Ophthalmol Vis Sci. 46:1561–1564. 2005. View Article : Google Scholar : PubMed/NCBI | |
Shi D and Gu W: Dual Roles of MDM2 in the regulation of p53: Ubiquitination dependent and ubiquitination independent mechanisms of MDM2 tepression of p53 sctivity. Genes Cancer. 3:240–248. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hussein MR: The relationships between p53 protein expression and the clinicopathological features in the uveal melanomas. Cancer Biol Ther. 4:57–59. 2005. View Article : Google Scholar : PubMed/NCBI | |
Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ and Hancock DC: Induction of apoptosis in fibroblasts by c-myc protein. Cell. 69:119–128. 1992. View Article : Google Scholar : PubMed/NCBI | |
Schwartz LH, Ferrand R, Boelle PY, Maylin C and D'Hermies F, Virmont J and D'Hermies F: Lack of correlation between the location of choroidal melanoma and ultraviolet-radiation dose distribution. Radiat Res. 147:451–456. 1997. View Article : Google Scholar : PubMed/NCBI | |
Lim S and Kaldis P: Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development. 140:3079–3093, 20132. View Article : Google Scholar : PubMed/NCBI | |
Ding L, Cao J, Lin W, Chen H, Xiong X, Ao H, Yu M, Lin J and Cui Q: The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer. Int J Mol Sci. 21:19602020. View Article : Google Scholar | |
Ando K, Ajchenbaum-Cymbalista F and Griffin JD: Regulation of G1/S transition by cyclins D2 and D3 in hematopoietic cells. Proc Natl Acad Sci USA. 90:9571–9575. 1993. View Article : Google Scholar : PubMed/NCBI | |
Bartkova J, Lukas J, Strauss M and Bartek J: Cyclin D3: Requirement for G1/S transition and high abundance in quiescent tissues suggest a dual role in proliferation and differentiation. Oncogene. 17:1027–1037. 1998. View Article : Google Scholar : PubMed/NCBI | |
Bonelli P, Tuccillo FM, Borrelli A, Schiattarella A and Buonaguro FM: CDK/CCN and CDKI alterations for cancer prognosis and therapeutic predictivity. BioMed Res Int. 2014:3610202014. View Article : Google Scholar : PubMed/NCBI | |
Li J, Poi MJ and Tsai MD: Regulatory mechanisms of tumor suppressor P16(INK4A) and their relevance to cancer. Biochemistry. 50:5566–5582. 2011. View Article : Google Scholar : PubMed/NCBI | |
McConnell BB, Gregory FJ, Stott FJ, Hara E and Peters G: Induced expression of p16(INK4a) inhibits both CDK4- and CDK2-associated kinase activity by reassortment of cyclin-CDK-inhibitor complexes. Mol Cell Biol. 19:1981–1989. 1999. View Article : Google Scholar : PubMed/NCBI | |
Satyanarayana A and Rudolph KL: p16 and ARF: Activation of teenage proteins in old age. J Clin Invest. 114:1237–1240. 2004. View Article : Google Scholar : PubMed/NCBI | |
Macleod KF, Sherry N, Hannon G, Beach D, Tokino T, Kinzler K, Vogelstein B and Jacks T: p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev. 9:935–944. 1995. View Article : Google Scholar : PubMed/NCBI | |
Mouriaux F, Maurage CA, Labalette P, Sablonnière B, Malecaze F and Darbon JM: Cyclin-dependent kinase inhibitory protein expression in human choroidal melanoma tumors. Invest Ophthalmol Vis Sci. 41:2837–2843. 2000.PubMed/NCBI | |
Abbas T and Dutta A: p21 in cancer: Intricate networks and multiple activities. Nat Rev Cancer. 9:400–414. 2009. View Article : Google Scholar : PubMed/NCBI | |
Abukhdeir AM and Park BH: P21 and p27: Roles in carcinogenesis and drug resistance. Expert Rev Mol Med. 10:e192008. View Article : Google Scholar : PubMed/NCBI | |
Blain SW, Scher HI, Cordon-Cardo C and Koff A: p27 as a target for cancer therapeutics. Cancer Cell. 3:111–115. 2003. View Article : Google Scholar : PubMed/NCBI | |
Mouriaux F, Casagrande F, Pillaire MJ, Manenti S, Malecaze F and Darbon JM: Differential expression of G1 cyclins and cyclin-dependent kinase inhibitors in normal and transformed melanocytes. Invest Ophthalmol Vis Sci. 39:876–884. 1998.PubMed/NCBI | |
Narasimha AM, Kaulich M, Shapiro GS, Choi YJ, Sicinski P and Dowdy SF: Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. eLife. 3:e028722014. View Article : Google Scholar | |
Rayess H, Wang MB and Srivatsan ES: Cellular senescence and tumor suppressor gene p16. Int J Cancer. 130:1715–1725. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nagarkatti-Gude N, Wang Y, Ali MJ, Honavar SG, Jager MJ and Chan CC: Genetics of primary intraocular tumors. Ocul Immunol Inflamm. 20:244–254. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bartek J, Bartkova J and Lukas J: The retinoblastoma protein pathway in cell cycle control and cancer. Exp Cell Res. 237:1–6. 1997. View Article : Google Scholar : PubMed/NCBI | |
Brantley MA Jr and Harbour JW: Inactivation of retinoblastoma protein in uveal melanoma by phosphorylation of sites in the COOH-terminal region. Cancer Res. 60:4320–4323. 2000.PubMed/NCBI | |
Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM, Moses TY, Hostetter G, Wagner U, Kakareka J, et al: High frequency of BRAF mutations in nevi. Nat Genet. 33:19–20. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hollern DP, Honeysett J, Cardiff RD and Andrechek ER: The E2F transcription factors regulate tumor development and metastasis in a mouse model of metastatic breast cancer. Mol Cell Biol. 34:3229–3243. 2014. View Article : Google Scholar : PubMed/NCBI | |
Timmers C, Sharma N, Opavsky R, Maiti B, Wu L, Wu J, Orringer D, Trikha P, Saavedra HI and Leone G: E2f1, E2f2, and E2f3 control E2F target expression and cellular proliferation via a p53-dependent negative feedback loop. Mol Cell Biol. 27:65–78. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lundberg AS and Weinberg RA: Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol Cell Biol. 18:753–761. 1998. View Article : Google Scholar : PubMed/NCBI | |
Calipel A, Abonnet V, Nicole O, Mascarelli F, Coupland SE, Damato B and Mouriaux F: Status of RASSF1A in uveal melanocytes and melanoma cells. Mol Cancer Res. 9:1187–1198. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang ZK, Yang JY, Xu ZZ and Yu WH: DNA Methylation and Uveal Melanoma. Chin Med J (Engl). 131:845–851. 2018. View Article : Google Scholar : PubMed/NCBI |