1
|
Ebrahimi H, Amini E, Pishgar F, Moghaddam
SS, Nabavizadeh B, Rostamabadi Y, Aminorroaya A, Fitzmaurice C,
Farzadfar F, Nowroozi MR, et al: Global, regional and national
burden of bladder cancer, 1990 to 2016: Results from the GBD Study
2016. J Urol. 201:893–901. 2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Droller MJ: Bladder cancer: Current
diagnosis and treatment (Current Clinical Urology). Humana.
2010.
|
4
|
Sternberg CN, Yagoda A, Scher HI, Watson
RC, Herr HW, Morse MJ, Sogani PC, Vaughan ED Jr, Bander N,
Weiselberg LR, et al: M-Vac (methotrexate, vinblastine, doxorubicin
and cisplatin) for advanced transitional cell carcinoma of the
urothelium. J Urol. 139:461–469. 1988. View Article : Google Scholar : PubMed/NCBI
|
5
|
Moore MJ, Winquist EW, Murray N, Tannock
IF, Huan S, Bennett K, Walsh W and Seymour L: Gemcitabine plus
cisplatin, an active regimen in advanced urothelial cancer: A phase
II trial of the National cancer institute of Canada clinical trials
group. J Clin Oncol. 17:2876–2881. 1999. View Article : Google Scholar : PubMed/NCBI
|
6
|
Seront E and Machiels JP: Molecular
biology and targeted therapies for urothelial carcinoma. Cancer
Treat Rev. 41:341–353. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Scher HI, Geller NL, Curley T and Tao Y:
Effect of relative cumulative dose-intensity on survival of
patients with urothelial cancer treated with M-VAC. J Clin Oncol.
11:400–407. 1993. View Article : Google Scholar : PubMed/NCBI
|
8
|
Pinkerneil M, Hoffmann MJ, Schulz WA and
Niegisch G: HDACs and HDAC inhibitors in urothelial
carcinoma-perspectives for an antineoplastic treatment. Curr Med
Chem. 24:4151–4165. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Jaenisch R and Bird A: Epigenetic
regulation of gene expression: How the genome integrates intrinsic
and environmental signals. Nat Genet. 33 (Suppl):S245–S254. 2003.
View Article : Google Scholar
|
10
|
Gaisina IN, Tueckmantel W, Ugolkov A, Shen
S, Hoffen J, Dubrovskyi O, Mazar A, Schoon RA, Billadeau D and
Kozikowski AP: Identification of HDAC6-selective inhibitors of low
cancer cell cytotoxicity. Chem Med Chem. 11:81–92. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Renaud JP: Structural biology in drug
discovery: Methods, Techniques, and Practices. Wiley; 2020,
View Article : Google Scholar
|
12
|
Glozak MA and Seto E: Histone deacetylases
and cancer. Oncogene. 26:5420–5432. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Halsall JA and Turner BM: Histone
deacetylase inhibitors for cancer therapy: An evolutionarily
ancient resistance response may explain their limited success.
Bioessays. 38:1102–1110. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Benedetti R, Conte M and Altucci L:
Targeting histone deacetylases in diseases: Where are we? Antioxid
Redox Signal. 23:99–126. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Subramanian S, Bates SE, Wright JJ,
Espinoza-Delgado I and Piekarz RL: Clinical toxicities of histone
deacetylase inhibitors. Pharmaceuticals (Basel). 3:2751–2767. 2010.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang J and Zhong Q: Histone deacetylase
inhibitors and cell death. Cell Mol Life Sci. 71:3885–3901. 2014.
View Article : Google Scholar : PubMed/NCBI
|
17
|
simplehttps://chemoth.com/
|
18
|
Rana Z, Diermeier S, Hanif M and Rosengren
RJ: Understanding failure and improving treatment using HDAC
inhibitors for prostate cancer. Biomedicines. 8:222020. View Article : Google Scholar
|
19
|
Cavenagh JD and Popat R: Optimal
management of histone deacetylase inhibitor-related adverse events
in patients with multiple myeloma: A focus on panobinostat. Clin
Lymphoma Myeloma Leuk. 18:501–507. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Shah MH, Binkley P, Chan K, Xiao J,
Arbogast D, Collamore M, Farra Y, Young D and Grever M:
Cardiotoxicity of histone deacetylase inhibitor depsipeptide in
patients with metastatic neuroendocrine tumors. Clin Cancer Res.
12:3997–4003. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
de Ruijter AJ, van Gennip AH, Caron HN,
Kemp S and van Kuilenburg AB: Histone deacetylases (HDACs):
Characterization of the classical HDAC family. Biochem J.
370:737–749. 2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Li Y, Shin D and Kwon SH: Histone
deacetylase 6 plays a role as a distinct regulator of diverse
cellular processes. FEBS J. 280:775–793. 2013.PubMed/NCBI
|
23
|
Pernet L, Faure V, Gilquin B,
Dufour-Guérin S, Khochbin S and Vourc'h C: HDAC6-ubiquitin
interaction controls the duration of HSF1 activation after heat
shock. Mol Biol Cell. 25:4187–4194. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Boyault C, Sadoul K, Pabion M and Khochbin
S: HDAC6, at the crossroads between cytoskeleton and cell signaling
by acetylation and ubiquitination. Oncogene. 26:5468–5476. 2007.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Valenzuela-Fernández A, Cabrero JR,
Serrador JM and Sánchez-Madrid F: HDAC6: A key regulator of
cytoskeleton, cell migration and cell-cell interactions. Trends
Cell Biol. 18:291–297. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zuo Q, Wu W, Li X, Zhao L and Chen W:
HDAC6 and SIRT2 promote bladder cancer cell migration and invasion
by targeting cortactin. Oncol Rep. 27:819–824. 2012.PubMed/NCBI
|
27
|
Cha TL, Chuang MJ, Wu ST, Sun GH, Chang
SY, Yu DS, Huang SM, Huan SK, Cheng TC, Chen TT, et al: Dual
degradation of Aurora A and B kinases by the histone deacetylase
inhibitor LBH589 Induces G2-M arrest and apoptosis of renal cancer
cells. Clin Cancer Res. 15:840–850. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Gao YS, Hubbert CC and Yao TP: The
microtubule-associated histone deacetylase 6 (HDAC6) regulates
epidermal growth factor receptor (EGFR) endocytic trafficking and
degradation. J Biol Chem. 285:11219–11226. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lienlaf M, Perez-Villarroel P, Knox T,
Pabon M, Sahakian E, Powers J, Woan KV, Lee C, Cheng F, Deng S, et
al: Essential role of HDAC6 in the regulation of PD-L1 in melanoma.
Mol Oncol. 10:735–750. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Niegisch G, Knievel J, Koch A, Hader C,
Fischer U, Albers P and Schulz WA: Changes in histone deacetylase
(HDAC) expression patterns and activity of HDAC inhibitors in
urothelial cancers. Urol Oncol. 31:1770–1779. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Brierley JD, Gospodarowicz MK and
Wittekind C: TNM classification of malignant Tumours. 8th edition.
John Wiley & Sons, Ltd.; 2017
|
32
|
The Japanese Society of Pathology,
Japanese Society of Urology (ed.), . General Rule for Clinical and
Pathological Studies on Bladder Cancer. Third edition (in
Japanese). Kanahara Publishing; Tokyo, Japan: pp. 1022001
|
33
|
Bilim V, Yuuki K, Itoi T, Muto A, Kato T,
Nagaoka A, Motoyama T and Tomita Y: Double inhibition of XIAP and
Bcl-2 axis is beneficial for retrieving sensitivity of renal cell
cancer to apoptosis. Br J Cancer. 98:941–949. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Seo J, Min SK, Park HR, Kim DH, Kwon MJ,
Kim LS and Ju YS: Expression of Histone Deacetylases HDAC1, HDAC2,
HDAC3, and HDAC6 in invasive ductal carcinomas of the breast. J
Breast Cancer. 17:323–331. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Brahmer J, Reckamp KL, Baas P, Crinò L,
Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE,
Holgado E, et al: Nivolumab versus docetaxel in advanced
squamous-cell non-small-cell lung cancer. N Engl J Med.
373:123–135. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bilim V, Kawasaki T, Katagiri A, Wakatsuki
S, Takahashi K and Tomita Y: Altered expression of beta-catenin in
renal cell cancer and transitional cell cancer with the absence of
beta-catenin gene mutations. Clin Cancer Res. 6:460–466.
2000.PubMed/NCBI
|
37
|
Choudhary C, Kumar C, Gnad F, Nielsen ML,
Rehman M, Walther TC, Olsen JV and Mann M: Lysine acetylation
targets protein complexes and co-regulates major cellular
functions. Science. 325:834–840. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Liu Y, Peng L, Seto E, Huang S and Qiu Y:
Modulation of histone deacetylase 6 (HDAC6) nuclear import and
tubulin deacetylase activity through acetylation. J Biol Chem.
287:29168–29174. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Finzer P, Kuntzen C, Soto U, zur Hausen H
and Rösl F: Inhibitors of histone deacetylase arrest cell cycle and
induce apoptosis in cervical carcinoma cells circumventing human
papillomavirus oncogene expression. Oncogene. 20:4768–4776. 2001.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Du Y, Seibenhener ML, Yan J, Jiang J and
Wooten MC: aPKC Phosphorylation of HDAC6 results in increased
deacetylation activity. PLoS One. 10:e01231912015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Rosik L, Niegisch G, Fischer U, Jung M,
Schulz WA and Hoffmann MJ: Limited efficacy of specific HDAC6
inhibition in urothelial cancer cells. Cancer Biol Ther.
15:742–757. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Knox T, Sahakian E, Banik D, Hadley M,
Palmer E, Noonepalle S, Kim J, Powers J, Gracia-Hernandez M,
Oliveira V, et al: Selective HDAC6 inhibitors improve anti-PD-1
immune checkpoint blockade therapy by decreasing the
anti-inflammatory phenotype of macrophages and down-regulation of
immunosuppressive proteins in tumor cells. Sci Rep. 9:61362019.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Patsoukis N, Wang Q, Strauss L and
Boussiotis VA: Revisiting the PD-1 pathway. Sci Adv.
6:eabd27122020. View Article : Google Scholar : PubMed/NCBI
|
44
|
Keremu A, Aimaiti A, Liang Z and Zou X:
Role of the HDAC6/STAT3 pathway in regulating PD-L1 expression in
osteosarcoma cell lines. Cancer Chemother Pharmacol. 83:255–264.
2019. View Article : Google Scholar : PubMed/NCBI
|
45
|
Ota S, Zhou ZQ and Hurlin PJ: Suppression
of FGFR3- and MYC-dependent oncogenesis by tubacin: Association
with HDAC6-dependent and independent activities. Oncotarget.
9:3172–3187. 2017. View Article : Google Scholar : PubMed/NCBI
|
46
|
Tavares MT, Shen S, Knox T, Hadley M,
Kutil Z, Bařinka C, Villagra A and Kozikowski AP: Synthesis and
pharmacological evaluation of selective histone deacetylase 6
inhibitors in melanoma models. ACS Med Chem Lett. 8:1031–1036.
2017. View Article : Google Scholar : PubMed/NCBI
|
47
|
Shen S, Benoy V, Bergman JA, Kalin JH,
Frojuello M, Vistoli G, Haeck W, Van Den Bosch L and Kozikowski AP:
Bicyclic-capped histone deacetylase 6 inhibitors with improved
activity in a model of axonal charcot-marie-tooth disease. ACS Chem
Neurosci. 7:240–258. 2016. View Article : Google Scholar : PubMed/NCBI
|
48
|
Kozikowski AS and Bergman J: Preparation
of tetrahydroquinoline substituted hydroxamic acids as selective
histone deacetylase 6 inhibitors (ed.) AP (ed.). 2017.
|
49
|
Gaisina IN, Lee SH, Kaidery NA, Ben Aissa
M, Ahuja M, Smirnova NN, Wakade S, Gaisin A, Bourassa MW, Ratan RR,
et al: Activation of Nrf2 and hypoxic adaptive response contribute
to neuroprotection elicited by phenylhydroxamic acid selective
HDAC6 inhibitors. ACS Chem Neurosci. 9:894–900. 2018. View Article : Google Scholar : PubMed/NCBI
|
50
|
Osipyants AI, Poloznikov AA, Smirnova NA,
Hushpulian DM, Khristichenko AY, Chubar TA, Zakhariants AA, Ahuja
M, Gaisina IN, Thomas B, et al: L-ascorbic acid: A true substrate
for HIF prolyl hydroxylase? Biochimie. 147:46–54. 2018. View Article : Google Scholar : PubMed/NCBI
|
51
|
Shen S, Hadley M, Ustinova K, Pavlicek J,
Knox T, Noonepalle S, Tavares MT, Zimprich CA, Zhang G, Robers MB,
et al: Discovery of a new Isoxazole-3-hydroxamate-Based histone
deacetylase 6 inhibitor SS-208 with antitumor activity in syngeneic
melanoma mouse models. J Med Chem. 62:8557–8577. 2019. View Article : Google Scholar : PubMed/NCBI
|
52
|
Segretti MC, Vallerini GP, Brochier C,
Langley B, Wang L, Hancock WW and Kozikowski AP: Thiol-based potent
and selective HDAC6 inhibitors promote tubulin acetylation and
T-regulatory cell suppressive function. ACS Med Chem Lett.
6:1156–1161. 2015. View Article : Google Scholar : PubMed/NCBI
|
53
|
Lv W, Zhang G, Barinka C, Eubanks JH and
Kozikowski AP: Design and synthesis of mercaptoacetamides as
potent, selective, and brain permeable histone deacetylase 6
inhibitors. ACS Med Chem Lett. 8:510–515. 2017. View Article : Google Scholar : PubMed/NCBI
|