1
|
Kitahara CM and Sosa JA: The changing
incidence of thyroid cancer. Nat Rev Endocrinol. 12:646–653. 2016.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Fagin JA and Wells SA Jr: Biologic and
clinical perspectives on thyroid cancer. N Engl J Med.
375:23072016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Rosai J, Albores Saavedra J, Asioli S, et
al: Papillary thyroid carcinoma. WHO Classification of Tumors of
Endocrine Organs. Lloyd RV, Osamura RY, Klöppel G and Rosai J: 4th
edition. IARC; Lyon: 2017
|
4
|
Ito Y, Higashiyama T, Takamura Y, Miya A,
Kobayashi K, Matsuzuka F, Kuma K and Miyauchi A: Risk factors for
recurrence to the lymph node in papillary thyroid carcinoma
patients without preoperatively detectable lateral node metastasis:
Validity of prophylactic modified radical neck dissection. World J
Surg. 31:2085–2091. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cooper DS, Doherty GM, Haugen BR, Kloos
RT, Lee SL, Mandel SJ, Mazzaferri EL, McIver B, Pacini F,
Schlumberger M, et al: Revised American Thyroid Association
management guidelines for patients with thyroid nodules and
differentiated thyroid cancer. Thyroid. 19:1167–1214. 2009.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Francis GL, Waguespack SG, Bauer AJ,
Angelos P, Benvenga S, Cerutti JM, Dinauer CA, Hamilton J, Hay ID,
Luster M, et al: Management guidelines for children with thyroid
nodules and differentiated thyroid cancer. Thyroid. 25:716–759.
2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Schlumberger M, Tahara M, Wirth LJ,
Robinson B, Brose MS, Elisei R, Habra MA, Newbold K, Shah MH, Hoff
AO, et al: Lenvatinib versus placebo in radioiodine-refractory
thyroid cancer. N Engl J Med. 372:621–630. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Khatami F, Larijani B, Nikfar S, Hasanzad
M, Fendereski K and Tavangar SM: Personalized treatment options for
thyroid cancer: Current perspectives. Pharmgenomics Pers Med.
12:235–245. 2019.PubMed/NCBI
|
9
|
Li M, Chen H and Wu T: LIN28: A cancer
stem cell promoter for immunotherapy in head and neck squamous cell
carcinoma. Oral Oncol. 98:92–95. 2019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Liu Y, Dong N, Li J, Zhao L, Gao L, Zhang
Y and Ruan J: RNA-binding protein Lin28 is associated with injured
dentin-dental pulp complex in Sprague-Dawley rats. Int J Clin Exp
Pathol. 11:4385–4394. 2018.PubMed/NCBI
|
11
|
Wu J, Zhao W, Wang Z, Xiang X, Zhang S and
Liu L: Long non-coding RNA SNHG20 promotes the tumorigenesis of
oral squamous cell carcinoma via targeting miR-197/LIN28 axis. J
Cell Mol Med. 23:680–688. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang H, Zong Y, Qiu G, Jia R, Xu X, Wang
F and Wu D: Silencing Lin28 promotes apoptosis in colorectal cancer
cells by upregulating let7c targeting of antiapoptotic BCL2L1. Mol
Med Rep. 17:5143–5149. 2018.PubMed/NCBI
|
13
|
He Y, Wang H, Yan M, Yang X, Shen R, Ni X,
Chen X, Yang P, Chen M, Lu X, et al: High LIN28A and PLK4
coexpression is associated with poor prognosis in epithelial
ovarian cancer. Mol Med Rep. 18:5327–5336. 2018.PubMed/NCBI
|
14
|
Xu C, Shen J, Xie S, Jiang Z, Huang L and
Wang L: Positive expression of Lin28 is correlated with poor
survival in gastric carcinoma. Med Oncol. 30:3822013. View Article : Google Scholar : PubMed/NCBI
|
15
|
McDaniel K, Hall C, Sato K, Lairmore T,
Marzioni M, Glaser S, Meng F and Alpini G: Lin28 and let-7: Roles
and regulation in liver diseases. Am J Physiol Gastrointest Liver
Physiol. 310:G757–G765. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yang Y, Li H, Liu Y, Chi C, Ni J and Lin
X: MiR-4319 hinders YAP expression to restrain non-small cell lung
cancer growth through regulation of LIN28-mediated RFX5 stability.
Biomed Pharmacother. 115:1089562019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Xu C, Jin S and Huang L: Expression of
Lin28 is correlated with prognosis and expression of HER-2 and
steroid receptors in breast cancer. Onco Targets Ther.
12:1105–1110. 2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ling R, Zhou Y, Zhou L, Dai D, Wu D, Mi L,
Mao C and Chen D: Lin28/microRNA-let-7a promotes metastasis under
circumstances of hyperactive Wnt signaling in esophageal squamous
cell carcinoma. Mol Med Rep. 17:5265–5271. 2018.PubMed/NCBI
|
19
|
Balzeau J, Menezes MR, Cao S and Hagan JP:
The LIN28/let-7 pathway in cancer. Front Genet. 8:312017.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Ji J and Wang XW: A Yin-Yang balancing act
of the lin28/let-7 link in tumorigenesis. J Hepatol. 53:974–975.
2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Huang J, Lin H, Zhong M, Huang J, Sun S,
Lin L and Chen Y: Role of Lin28A/let-7a/c-Myc pathway in growth and
malignant behavior of papillary thyroid carcinoma. Med Sci Monit.
24:8899–8909. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Amin MB, Greene FL, Edge SB, Compton CC,
Gershenwald JE, Brookland RK, Meyer L, Gress DM, Byrd DR and
Winchester DP: The Eighth edition AJCC Cancer Staging Manual:
Continuing to build a bridge from population-based to a more
‘personalized’ approach to cancer staging. CA Cancer J Clin.
67:93–99. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Dom G, Tarabichi M, Unger K, Thomas G,
Oczko-Wojciechowska M, Bogdanova T, Jarzab B, Dumont JE, Detours V
and Maenhaut C: A gene expression signature distinguishes normal
tissues of sporadic and radiation-induced papillary thyroid
carcinomas. Br J Cancer. 107:994–1000. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Akyay OZ, Gov E, Kenar H, Arga KY, Selek
A, Tarkun I, Canturk Z, Cetinarslan B, Gurbuz Y and Sahin B:
Mapping the molecular basis and markers of papillary thyroid
carcinoma progression and metastasis using global transcriptome and
microRNA profiling. OMICS. 24:148–159. 2020. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
He J, Zhou M, Li X, Gu S, Cao Y, Xing T,
Chen W, Chu C, Gu F, Zhou J, et al: SLC34A2 simultaneously promotes
papillary thyroid carcinoma growth and invasion through distinct
mechanisms. Oncogene. 39:2658–2675. 2020. View Article : Google Scholar : PubMed/NCBI
|
27
|
Loh KC, Greenspan FS, Gee L, Miller TR and
Yeo PP: Pathological tumor-node-metastasis (pTNM) staging for
papillary and follicular thyroid carcinomas: A retrospective
analysis of 700 patients. J Clin Endocrinol Metab. 82:3553–3562.
1997. View Article : Google Scholar : PubMed/NCBI
|
28
|
Guo K and Wang Z: Risk factors influencing
the recurrence of papillary thyroid carcinoma: A systematic review
and meta--analysis. Int J Clin Exp Pathol. 7:5393–5403.
2014.PubMed/NCBI
|
29
|
Veronese N, Luchini C, Nottegar A, Kaneko
T, Sergi G, Manzato E, Solmi M and Scarpa A: Prognostic impact of
extra-nodal extension in thyroid cancer: A meta-analysis. J Surg
Oncol. 112:828–833. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chereau N, Buffet C, Tresallet C, Tissier
F, Leenhardt L and Menegaux F: Recurrence of papillary thyroid
carcinoma with lateral cervical node metastases: Predictive factors
and operative management. Surgery. 159:755–762. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Su DH, Chang SH and Chang TC: The impact
of locoregional recurrences and distant metastases on the survival
of patients with papillary thyroid carcinoma. Clin Endocrinol
(Oxf). 82:286–294. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Melo M, Gaspar da Rocha A, Batista R,
Vinagre J, Martins MJ, Costa G, Ribeiro C, Carrilho F, Leite V,
Lobo C, et al: TERT, BRAF, and NRAS in primary thyroid cancer and
metastatic disease. J Clin Endocrinol Metab. 102:1898–1907. 2017.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Siraj AK, Pratheeshkumar P, Parvathareddy
SK, Bu R, Masoodi T, Iqbal K, Al-Rasheed M, Al-Dayel F, Al-Sobhi
SS, Alzahrani AS, et al: Prognostic significance of DNMT3A
alterations in Middle Eastern papillary thyroid carcinoma. Eur J
Cancer. 117:133–144. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Melo M, da Rocha AG, Vinagre J, Batista R,
Peixoto J, Tavares C, Celestino R, Almeida A, Salgado C, Eloy C, et
al: TERT promoter mutations are a major indicator of poor outcome
in differentiated thyroid carcinomas. J Clin Endocrinol Metab.
99:E754–E765. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Collina F, La Sala L, Liotti F, Prevete N,
La Mantia E, Chiofalo MG, Aquino G, Arenare L, Cantile M, Liguori
G, et al: AXL is a novel predictive factor and therapeutic target
for radioactive iodine refractory thyroid cancer. Cancers (Basel).
11:7852019. View Article : Google Scholar
|
36
|
Han J, Zhang M, Nie C, Jia J, Wang F, Yu
J, Bi W, Liu B, Sheng R, He G, et al: miR-215 suppresses papillary
thyroid cancer proliferation, migration, and invasion through the
AKT/GSK-3β/Snail signaling by targeting ARFGEF1. Cell Death Dis.
10:1952019. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhang J, Xu A, Miao C, Yang J, Gu M and
Song N: Prognostic value of Lin28A and Lin28B in various human
malignancies: A systematic review and meta-analysis. Cancer Cell
Int. 19:792019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Viswanathan SR, Powers JT, Einhorn W,
Hoshida Y, Ng TL, Toffanin S, O'Sullivan M, Lu J, Phillips LA,
Lockhart VL, et al: Lin28 promotes transformation and is associated
with advanced human malignancies. Nat Genet. 41:843–848. 2009.
View Article : Google Scholar : PubMed/NCBI
|