1
|
Brown JM and William WR: Exploiting tumour
hypoxia in cancer treatment. Nat Rev Cancer. 4:437–447. 2004.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Allen MR: Medication-Related osteonecrosis
of the jaw: Basic and translational science updates. Oral
Maxillofac Surg Clin North Am. 27:497–508. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bertout JA, Patel SA and Simon MC: Hypoxia
and metabolism series-timeline the impact of O-2 availability on
human cancer. Nat Rev Cancer. 8:967–975. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Brown JM and Giaccia AJ: The unique
physiology of solid tumors: Opportunities (and problems) for cancer
therapy. Cancer Res. 58:1408–1416. 1998.PubMed/NCBI
|
5
|
Malmgren RA and Flanigan CC: Localization
of the vegetative form of clostridium tetani in mouse tumors
following intravenous spore administration. Cancer Res. 15:473–478.
1955.PubMed/NCBI
|
6
|
Zu C and Wang JS: Tumor-colonizing
bacteria: A potential tumor targeting therapy. Crit Rev Microbiol.
40:225–235. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ben-Jacob E, Coffey DS and Levine H:
Bacterial survival strategies suggest rethinking cancer
cooperativity. Trends Microbiol. 20:403–410. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Forbes NS: Profile of a bacterial tumor
killer. Nat Biotechnol. 24:1484–1485. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Pawelek JM, Low KB and Bermudes D:
Bacteria as tumour-targeting vectors. Lancet Oncol. 4:548–556.
2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Dang LH, Bettegowda C, Huso DL, Kinzler KW
and Vogelstein B: Combination bacteriolytic therapy for the
treatment of experimental tumors. Proc Natl Acad Sci USA.
98:15155–15160. 2001. View Article : Google Scholar : PubMed/NCBI
|
11
|
Danhier F, Feron O and Preat V: To exploit
the tumor microenvironment: Passive and active tumor targeting of
nanocarriers for anti-cancer drug delivery. J Control Release.
148:135–146. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Carmeliet P and Jain RK: Angiogenesis in
cancer and other diseases. Nature. 407:249–257. 2000. View Article : Google Scholar : PubMed/NCBI
|
14
|
Horsman MR, Mortensen LS, Petersen JB,
Busk M and Overgaard J: Imaging hypoxia to improve radiotherapy
outcome. Nat Rev Clin Oncol. 9:674–687. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Geng L, Donnelly E, McMahon G, Lin PC,
Sierra-Rivera E, Oshinka H and Hallahan DE: Inhibition of vascular
endothelial growth factor receptor signaling leads to reversal of
tumor resistance to radiotherapy. Cancer Res. 61:2413–2419.
2001.PubMed/NCBI
|
16
|
Gottesman MM: Mechanisms of cancer drug
resistance. Annu Rev Med. 53:615–627. 2002. View Article : Google Scholar : PubMed/NCBI
|
17
|
Coley WB: The treatment of malignant
tumors by repeated inoculations of erysipelas. With a report of ten
original cases. 1893. Clin Orthop Relat Res. 3–11. 1991.PubMed/NCBI
|
18
|
Mose JR and Mose G: Oncolysis by
Clostridia. I. Activity of clostridium butyricum (M-55) and other
nonpathogenic clostridia against the ehrlich carcinoma. Cancer Res.
24:212–216. 1964.PubMed/NCBI
|
19
|
Roberts NJ, Zhang L, Janku F, Collins A,
Bai RY, Staedtke V, Rusk AW, Tung D, Miller M, Roix J, et al:
Intratumoral injection of clostridium novyi-NT spores induces
antitumor responses. Sci Transl Med. 6:249ra1112014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Forbes NS: Engineering the perfect
(bacterial) cancer therapy. Nat Rev Cancer. 10:785–794. 2010.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Wei MQ, Mengesha A, Good D and Anne J:
Bacterial targeted tumour therapy-dawn of a new era. Cancer Lett.
259:16–27. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Patyar S, Joshi R, Byrav DSP, Prakash A,
Medhi B and Das BK: Bacteria in cancer therapy: A novel
experimental strategy. J Biomed Sci. 17:212010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Agrawal N, Bettegowda C, Cheong I,
Geschwind JF, Drake CG, Hipkiss EL, Tatsumi M, Dang LH, Diaz LA Jr,
Pomper M, et al: Bacteriolytic therapy can generate a potent immune
response against experimental tumors. Proc Natl Acad Sci USA.
101:15172–15177. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Bettegowda C, Huang X, Lin J, Cheong I,
Kohli M, Szabo SA, Zhang X, Diaz LA Jr, Velculescu VE, Parmigiani
G, et al: The genome and transcriptomes of the anti-tumor agent
clostridium novyi-NT. Nat Biotechnol. 24:1573–1580. 2006.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Staedtke V, Bai RY, Sun W, Huang J, Kibler
KK, Tyler BM, Gallia GL, Kinzler K, Vogelstein B, Zhou S and
Riggins GJ: Clostridium novyi-NT can cause regression of
orthotopically implanted glioblastomas in rats. Oncotarget.
6:5536–5546. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Casares N, Pequignot MO, Tesniere A,
Ghiringhelli F, Roux S, Chaput N, Schmitt E, Hamai A, Hervas-Stubbs
S, Obeid M, et al: Caspase-dependent immunogenicity of
doxorubicin-induced tumor cell death. J Exp Med. 202:1691–1701.
2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Michaud M, Martins I, Sukkurwala AQ,
Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot
G, et al: Autophagy-dependent anticancer immune responses induced
by chemotherapeutic agents in mice. Science. 334:1573–1577. 2011.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Obeid M, Tesniere A, Ghiringhelli F, Fimia
GM, Apetoh L, Perfettini JL, Castedo M, Mignot G, Panaretakis T,
Casares N, et al: Calreticulin exposure dictates the immunogenicity
of cancer cell death. Nat Med. 13:54–61. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Furumoto K, Soares L, Engleman EG and
Merad M: Induction of potent antitumor immunity by in situ
targeting of intraturnoral DCs. J Clin Invest. 113:774–783. 2004.
View Article : Google Scholar : PubMed/NCBI
|
30
|
DeClue AE, Axiak-Bechtel SM, Zhang Y, Saha
S, Zhang L, Tung D and Bryan JN: Immune response to C. novyi-NT
immunotherapy. Vet Res. 49:382018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ji J, Park WR, Cho S, Yang Y, Li W, Harris
K, Huang X, Gu S, Kim DH, Zhang Z and Larson AC: Iron-oxide
nanocluster labeling of clostridium novyi-NT spores for MR
imaging-monitored locoregional delivery to liver tumors in rat and
rabbit models. J Vasc Interv Radiol. 30:1106–1115. 2019. View Article : Google Scholar : PubMed/NCBI
|
32
|
Theys J, Landuyt W, Nuyts S, Van Mellaert
L, Bosmans E, Rijnders A, Van Den Bogaert W, van Oosterom A, Anné J
and Lambin P: Improvement of clostridium tumour targeting vectors
evaluated in rat rhabdomyosarcomas. FEMS Immunol Med Microbiol.
30:37–41. 2001. View Article : Google Scholar : PubMed/NCBI
|
33
|
Bettegowda C, Dang LH, Abrams R, Huso DL,
Dillehay L, Cheong I, Agrawal N, Borzillary S, McCaffery JM, Watson
EL, et al: Overcoming the hypoxic barrier to radiation therapy with
anaerobic bacteria. Proc Natl Acad Sci USA. 100:15083–15088. 2003.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Krick EL, Sorenmo KU, Rankin SC, Cheong I,
Kobrin B, Thornton K, Kinzler KW, Vogelstein B, Zhou S and Diaz LA
Jr: Evaluation of clostridium novyi-NT spores in dogs with
naturally occurring tumors. Am J Vet Res. 73:112–118. 2012.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Hekmatshoar Y, Rahbar Saadat Y,
Hosseiniyan Khatibi SM, Ozkan T, Zununi Vahed F, Nariman-Saleh-Fam
Z, Pourghassem Gargari B, Sunguroglu A and Zununi Vahed S: The
impact of tumor and gut microbiotas on cancer therapy: Beneficial
or detrimental? Life Sci. 233:1166802019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Umer B, Good D, Anne J, Duan W and Wei MQ:
Clostridial spores for cancer therapy: Targeting solid tumour
microenvironment. J Toxicol. 2012:8627642012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Danino T, Lo J, Prindle A, Hasty J and
Bhatia SN: In vivo gene expression dynamics of tumor-targeted
bacteria. ACS Synth Biol. 1:465–470. 2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Li LY, Rojiani A and Siemann DW: Targeting
the tumor vasculature with combretastatin A-4 disodium phosphate:
Effects on radiation therapy. Int J Radiat Oncol Biol Phys.
42:899–903. 1998. View Article : Google Scholar : PubMed/NCBI
|
39
|
Smith AB III, Freeze BS, LaMarche MJ,
Sager J, Kinzler KW and Vogelstein B: Discodermolide analogues as
the chemical component of combination bacteriolytic therapy. Bioorg
Med Chem Lett. 15:3623–3626. 2005. View Article : Google Scholar : PubMed/NCBI
|
40
|
Dang LH, Bettegowda H, Agrawal N, Cheong
I, Huso D, Frost P, Loganzo F, Greenberger L, Barkoczy J, Pettit
GR, et al: Targeting vascular and avascular compartments of tumors
with C. novyi-NT and anti-microtubule agents. Cancer Biol Ther.
3:326–337. 2004. View Article : Google Scholar : PubMed/NCBI
|
41
|
Cheong I, Huang X, Bettegowda C, Diaz LA
Jr, Kinzler KW, Zhou S and Vogelstein B: A bacterial protein
enhances the release and efficacy of liposomal cancer drugs.
Science. 314:1308–1311. 2006. View Article : Google Scholar : PubMed/NCBI
|
42
|
Shimose S, Kawaguchi T, Tanaka M, Iwamoto
H, Miyazaki K, Moriyama E, Suzuki H, Niizeki T, Shirono T, Nakano
M, et al: Lenvatinib prolongs the progression-free survival time of
patients with intermediate-stage hepatocellular carcinoma
refractory to transarterial chemoembolization: A multicenter cohort
study using data mining analysis. Oncol Lett. 20:2257–2265. 2020.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Zhang XB: Experimental study of anaerobic
bacteria combined with interventional therapy for liver cancer. PhD
dissertationFudan University, Shanghai, China2009
|
44
|
Wachsberger P, Burd R and Dicker AP: Tumor
response to ionizing radiation combined with antiangiogenesis or
vascular targeting agents: Exploring mechanisms of interaction.
Clin Cancer Res. 9:1957–1971. 2003.PubMed/NCBI
|
45
|
Garcia-Barros M, Paris F, Cordon-Cardo C,
Lyden D, Rafii S, Haimovitz-Friedman A, Fuks Z and Kolesnick R:
Tumor response to radiotherapy regulated by endothelial cell
apoptosis. Science. 300:1155–1159. 2003. View Article : Google Scholar : PubMed/NCBI
|
46
|
Butterworth KT, Prise KM and Verhaegen F:
Small animal image-guided radiotherapy: Status, considerations and
potential for translational impact. Br J Radiol. 88:201406342015.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Wei MQ, Ellem KA, Dunn P, West MJ, Bai CX
and Vogelstein B: Facultative or obligate anaerobic bacteria have
the potential for multimodality therapy of solid tumours. Eur J
Cancer. 43:490–496. 2007. View Article : Google Scholar : PubMed/NCBI
|
48
|
Diaz LA, Cheong I, Foss CA, Zhang X,
Peters BA, Agrawal N, Bettegowda C, Karim B, Liu G, Khan K, et al:
Pharmacologic and toxicologic evaluation of C-novyi-NT spores.
Toxicol Sci. 88:562–575. 2005. View Article : Google Scholar : PubMed/NCBI
|
49
|
Kaimala S, Al-Sbiei A, Cabral-Marques O,
Fernandez-Cabezudo MJ and Al-Ramadi BK: Attenuated bacteria as
immunotherapeutic tools for cancer treatment. Front Oncol.
8:362018. View Article : Google Scholar : PubMed/NCBI
|
50
|
Bos R, Zhong H, Hanrahan CF, Mommers EC,
Semenza GL, Pinedo HM, Abeloff MD, Simons JW, van Diest PJ and van
der Wall E: Levels of hypoxia-inducible factor-1 alpha during
breast carcinogenesis. J Natl Cancer Inst. 93:309–314. 2001.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Groot AJ, Mengesha A, van der Wall E, van
Diest PJ, Theys J and Vooijs M: Functional antibodies produced by
oncolytic clostridia. Biochem Biophys Res Commun. 364:985–989.
2007. View Article : Google Scholar : PubMed/NCBI
|
52
|
Abdalla EK, Vauthey JN, Ellis LM, Ellis V,
Pollock R, Broglio KR, Hess K and Curley SA: Recurrence and
outcomes following hepatic resection, radiofrequency ablation, and
combined resection/ablation for colorectal liver metastases. Ann
Surg. 239:818–824. 2004. View Article : Google Scholar : PubMed/NCBI
|
53
|
Dietzel F, Gericke D and Konig W: Tumor
hyperthermia using high frequency for increase of oncolysis by
clostridium butyricum (M 55). Strahlentherapie. 152:537–541.
1976.(In German). PubMed/NCBI
|
54
|
Dietzel F and Gericke D: Intensification
of the oncolysis by clostridia by means of radio-frequency
hyperthermy in experiments on animals-dependence on dosage and on
intervals (author's transl). Strahlentherapie. 153:263–266.
1977.(In German). PubMed/NCBI
|
55
|
Gericke D, Dietzel F, Konig W, Ruster I
and Schumacher L: Further progress with oncolysis due to
apathogenic clostridia. Zentralbl Bakteriol Orig A. 243:102–112.
1979.PubMed/NCBI
|
56
|
Lee CH: Engineering bacteria toward tumor
targeting for cancer treatment: Current state and perspectives.
Appl Microbiol Biotechnol. 93:517–523. 2012. View Article : Google Scholar : PubMed/NCBI
|
57
|
Thiele EH, Arison RN and Boxer GE:
Oncolysis by clostridia. IV. Effect of nonpathogenic clostridial
spores in normal and pathological tissues. Cancer Res. 24:234–238.
1964.PubMed/NCBI
|
58
|
Liu G, Bettegowda C, Qiao Y, Staedtke V,
Chan KWY, Bai R, Li Y, Riggins GJ, Kinzler KW, Bulte JWM, et al:
Noninvasive imaging of infection after treatment with tumor-homing
bacteria using chemical exchange saturation transfer (CEST) MRI.
Magn Reson Med. 70:1690–1698. 2013. View Article : Google Scholar : PubMed/NCBI
|
59
|
Park W, Cho S, Huang X, Larson AC and Kim
DH: Branched gold nanoparticle coating ofclostridium novyi-NT
spores for CT-guided intratumoral injection. Small. 13:102017.
View Article : Google Scholar
|
60
|
Zheng L, Zhang Z, Khazaie K, Saha S,
Lewandowski RJ, Zhang G and Larson AC: MRI-monitored intra-tumoral
injection of iron-oxide labeled clostridium novyi-NT anaerobes in
pancreatic carcinoma mouse model. PLos One. 9:1162042014.
View Article : Google Scholar
|