Human endogenous retroviruses in cancer: Expression, regulation and function (Review)
- Authors:
- Yuan Gao
- Xiao-Fang Yu
- Ting Chen
-
Affiliations: Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zheijang 310009, P.R. China - Published online on: December 17, 2020 https://doi.org/10.3892/ol.2020.12382
- Article Number: 121
-
Copyright: © Gao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al: Initial sequencing and analysis of the human genome. Nature. 409:860–921. 2001. View Article : Google Scholar | |
Bannert N and Kurth R: The evolutionary dynamics of human endogenous retroviral families. Annu Rev Genomics Hum Genet. 7:149–173. 2006. View Article : Google Scholar | |
Hohn O, Hanke K and Bannert N: HERV-K(HML-2), the best preserved family of HERVs: Endogenization, expression, and implications in health and disease. Front Oncol. 3:2462013. View Article : Google Scholar | |
Garcia-Montojo M, Doucet-O'Hare T, Henderson L and Nath A: Human endogenous retrovirus-K (HML-2): A comprehensive review. Crit Rev Microbiol. 44:715–738. 2018. View Article : Google Scholar | |
Henzy JE and Coffin JM: Betaretroviral envelope subunits are noncovalently associated and restricted to the mammalian class. J Virol. 87:1937–1946. 2013. View Article : Google Scholar | |
Schommer S, Sauter M, Kräusslich HG, Best B and Mueller-Lantzsch N: Characterization of the human endogenous retrovirus K proteinase. J Gen Virol. 77:375–379. 1996. View Article : Google Scholar | |
George M, Schwecke T, Beimforde N, Hohn O, Chudak C, Zimmermann A, Kurth R, Naumann D and Bannert N: Identification of the protease cleavage sites in a reconstituted Gag polyprotein of an HERV-K(HML-2) element. Retrovirology. 8:302011. View Article : Google Scholar | |
Kjellman C, Sjögren HO and Widegren B: HERV-F, a new group of human endogenous retrovirus sequences. J Gen Virol. 80:2383–2392. 1999. View Article : Google Scholar | |
Kremer D, Gruchot J, Weyers V, Oldemeier L, Göttle P, Healy L, Ho Jang J, Kang T, Xu Y, Volsko C, Dutta R, et al: pHERV-W envelope protein fuels microglial cell-dependent damage of myelinated axons in multiple sclerosis. Proc Natl Acad Sci USA. 116:15216–15225. 2019. View Article : Google Scholar | |
Li W, Lee MH, Henderson L, Tyagi R, Bachani M, Steiner J, Campanac E, Hoffman DA, von Geldern G, Johnson K, et al: Human endogenous retrovirus-K contributes to motor neuron disease. Sci Transl Med. 7:307ra1532015. View Article : Google Scholar | |
Terry SN, Manganaro L, Cuesta-Dominguez A, Brinzevich D, Simon V and Mulder LCF: Expression of HERV-K108 envelope interferes with HIV-1 production. Virology. 509:52–59. 2017. View Article : Google Scholar | |
Monde K, Terasawa H, Nakano Y, Soheilian F, Nagashima K, Maeda Y and Ono A: Molecular mechanisms by which HERV-K Gag interferes with HIV-1 Gag assembly and particle infectivity. Retrovirology. 14:272017. View Article : Google Scholar | |
Huang WJ, Liu ZC, Wei W, Wang GH, Wu JG and Zhu F: Human endogenous retroviral pol RNA and protein detected and identified in the blood of individuals with schizophrenia. Schizophr Res. 83:193–199. 2006. View Article : Google Scholar | |
Yao Y, Schröder J, Nellåker C, Bottmer C, Bachmann S, Yolken RH and Karlsson H: Elevated levels of human endogenous retrovirus-W transcripts in blood cells from patients with first episode schizophrenia. Genes Brain Behav. 7:103–112. 2008. | |
Vargas A, Toufaily C, LeBellego F, Rassart E, Lafond J and Barbeau B: Reduced expression of both syncytin 1 and syncytin 2 correlates with severity of preeclampsia. Reprod Sci. 18:1085–1091. 2011. View Article : Google Scholar | |
Levet S, Charvet B, Bertin A, Deschaumes A, Perron H and Hober D: Human endogenous retroviruses and type 1 diabetes. Curr Diab Rep. 19:1412019. View Article : Google Scholar | |
Nogueira MA, Gavioli CF, Pereira NZ, de Carvalho GC, Domingues R, Aoki V and Sato MN: Human endogenous retrovirus expression is inversely related with the up-regulation of interferon-inducible genes in the skin of patients with lichen planus. Arch Dermatol Res. 307:259–264. 2015. View Article : Google Scholar | |
Ariza ME and Williams MV: A human endogenous retrovirus K dUTPase triggers a TH1, TH17 cytokine response: Does it have a role in psoriasis? J Invest Dermatol. 131:2419–2427. 2011. View Article : Google Scholar | |
Fali T, Le Dantec C, Thabet Y, Jousse S, Hanrotel C, Youinou P, Brooks WH, Perl A and Renaudineau Y: DNA methylation modulates HRES1/p28 expression in B cells from patients with Lupus. Autoimmunity. 47:265–271. 2014. View Article : Google Scholar | |
Reynier F, Verjat T, Turrel F, Imbert PE, Marotte H, Mougin B and Miossec P: Increase in human endogenous retrovirus HERV-K (HML-2) viral load in active rheumatoid arthritis. Scand J Immunol. 70:295–299. 2009. View Article : Google Scholar | |
Johanning GL, Malouf GG, Zheng X, Esteva FJ, Weinstein JN, Wang-Johanning F and Su X: Expression of human endogenous retrovirus-K is strongly associated with the basal-like breast cancer phenotype. Sci Rep. 7:419602017. View Article : Google Scholar | |
Ma W, Hong Z, Liu H, Chen X, Ding L, Liu Z, Zhou F and Yuan Y: Human Endogenous retroviruses-K (HML-2) expression is correlated with prognosis and progress of hepatocellular carcinoma. Biomed Res Int. 2016:82016422016. View Article : Google Scholar | |
Li M, Radvanyi L, Yin B, Rycaj K, Li J, Chivukula R, Lin K, Lu Y, Shen J, Chang DZ, et al: Downregulation of human endogenous retrovirus type K (HERV-K) Viral env RNA in pancreatic cancer cells decreases cell proliferation and tumor growth. Clin Cancer Res. 23:5892–5911. 2017. View Article : Google Scholar | |
Chen T, Meng Z, Gan Y, Wang X, Xu F, Gu Y, Xu X, Tang J, Zhou H, Zhang X, et al: The viral oncogene Np9 acts as a critical molecular switch for co-activating β-catenin, ERK, Akt and Notch1 and promoting the growth of human leukemia stem/progenitor cells. Leukemia. 27:1469–1478. 2013. View Article : Google Scholar | |
Mangeney M, Renard M, Schlecht-Louf G, Bouallaga I, Heidmann O, Letzelter C, Richaud A, Ducos B and Heidmann T: Placental syncytins: Genetic disjunction between the fusogenic and immunosuppressive activity of retroviral envelope proteins. Proc Natl Acad Sci USA. 104:20534–20539. 2007. View Article : Google Scholar | |
Panda A, de Cubas AA, Stein M, Riedlinger G, Kra J, Mayer T, Smith CC, Vincent BG, Serody JS, Beckermann KE, et al: Endogenous retrovirus expression is associated with response to immune checkpoint blockade in clear cell renal cell carcinoma. JCI Insight. 3:e1215222018. View Article : Google Scholar | |
Tavakolian S, Goudarzi H and Faghihloo E: Evaluating the expression level of HERV-K env, np9, rec and gag in breast tissue. Infect Agent Cancer. 14:422019. View Article : Google Scholar | |
Ibba G, Piu C, Uleri E, Serra C and Dolei A: Disruption by SaCas9 endonuclease of HERV-Kenv, a retroviral gene with oncogenic and neuropathogenic potential, inhibits molecules involved in cancer and amyotrophic lateral sclerosis. Viruses. 10:4122018. View Article : Google Scholar | |
Galli UM, Sauter M, Lecher B, Maurer S, Herbst H, Roemer K and Mueller-Lantzsch N: Human endogenous retrovirus rec interferes with germ cell development in mice and may cause carcinoma in situ, the predecessor lesion of germ cell tumors. Oncogene. 24:3223–3228. 2005. View Article : Google Scholar | |
Kreimer U, Schulz WA, Koch A, Niegisch G and Goering W: HERV-K and LINE-1 DNA methylation and reexpression in urothelial carcinoma. Front Oncol. 3:2552013. View Article : Google Scholar | |
Rycaj K, Plummer JB, Yin B, Li M, Garza J, Radvanyi L, Ramondetta LM, Lin K, Johanning GL, Tang DG and Wang-Johanning F: Cytotoxicity of human endogenous retrovirus K-specific T cells toward autologous ovarian cancer cells. Clin Cancer Res. 21:471–483. 2015. View Article : Google Scholar | |
Zare M, Mostafaei S, Ahmadi A, Azimzadeh Jamalkandi S, Abedini A, Esfahani-Monfared Z, Dorostkar R and Saadati M: Human endogenous retrovirus env genes: Potential blood biomarkers in lung cancer. Microb Pathog. 115:189–193. 2018. View Article : Google Scholar | |
Bergallo M, Montanari P, Mareschi K, Merlino C, Berger M, Bini I, Daprà V, Galliano I and Fagioli F: Expression of the pol gene of human endogenous retroviruses HERV-K and -W in leukemia patients. Arch Virol. 162:3639–3644. 2017. View Article : Google Scholar | |
Barth M, Gröger V, Cynis H and Staege MS: Identification of human endogenous retrovirus transcripts in Hodgkin Lymphoma cells. Mol Biol Rep. 46:1885–1893. 2019. View Article : Google Scholar | |
Aagaard L, Bjerregaard B, Kjeldbjerg AL, Pedersen FS, Larsson LI and Rossi JJ: Silencing of endogenous envelope genes in human choriocarcinoma cells shows that envPb1 is involved in heterotypic cell fusions. J Gen Virol. 93:1696–1699. 2012. View Article : Google Scholar | |
Liang Q, Xu Z, Xu R, Wu L and Zheng S: Expression patterns of non-coding spliced transcripts from human endogenous retrovirus HERV-H elements in colon cancer. PLoS One. 7:e299502012. View Article : Google Scholar | |
Giebler M, Staege MS, Blauschmidt S, Ohm LI, Kraus M, Würl P, Taubert H and Greither T: Elevated HERV-K expression in soft tissue sarcoma is associated with worsened relapse-free survival. Front Microbiol. 9:2112018. View Article : Google Scholar | |
Dai L, Del Valle L, Miley W, Whitby D, Ochoa AC, Flemington EK and Qin Z: Transactivation of human endogenous retrovirus K (HERV-K) by KSHV promotes Kaposi's sarcoma development. Oncogene. 37:4534–4545. 2018. View Article : Google Scholar | |
Montesion M, Bhardwaj N, Williams ZH, Kuperwasser C and Coffin JM: Mechanisms of HERV-K (HML-2) transcription during human mammary epithelial cell transformation. J Virol. 92:e01258–17. 2018. | |
Zhou F, Li M, Wei Y, Lin K, Lu Y, Shen J, Johanning GL and Wang-Johanning F: Activation of HERV-K Env protein is essential for tumorigenesis and metastasis of breast cancer cells. Oncotarget. 7:84093–84117. 2016. View Article : Google Scholar | |
Chan SM, Sapir T, Park SS, Rual JF, Contreras-Galindo R, Reiner O and Markovitz DM: The HERV-K accessory protein Np9 controls viability and migration of teratocarcinoma cells. PLoS One. 14:e02129702019. View Article : Google Scholar | |
van de Lagemaat LN, Medstrand P and Mager DL: Multiple effects govern endogenous retrovirus survival patterns in human gene introns. Genome Biol. 7:R862006. View Article : Google Scholar | |
Lee Y and Rio DC: Mechanisms and regulation of alternative pre-mRNA splicing. Annu Rev Biochem. 84:291–323. 2015. View Article : Google Scholar | |
Leib-Mösch C, Haltmeier M, Werner T, Geigl EM, Brack-Werner R, Francke U, Erfle V and Hehlmann R: Genomic distribution and transcription of solitary HERV-K LTRs. Genomics. 18:261–269. 1993. View Article : Google Scholar | |
Ng KW, Attig J, Young GR, Ottina E, Papamichos SI, Kotsianidis I and Kassiotis G: Soluble PD-L1 generated by endogenous retroelement exaptation is a receptor antagonist. Elife. 8:e502562019. View Article : Google Scholar | |
Hassounah NB, Malladi VS, Huang Y, Freeman SS, Beauchamp EM, Koyama S, Souders N, Martin S, Dranoff G, Wong KK, et al: Identification and characterization of an alternative cancer-derived PD-L1 splice variant. Cancer Immunol Immunother. 68:407–420. 2019. View Article : Google Scholar | |
Bassani-Sternberg M, Bräunlein E, Klar R, Engleitner T, Sinitcyn P, Audehm S, Straub M, Weber J, Slotta-Huspenina J, Specht K, et al: Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat Commun. 7:134042016. View Article : Google Scholar | |
Attig J, Young GR, Hosie L, Perkins D, Encheva-Yokoya V, Stoye JP, Snijders AP, Ternette N and Kassiotis G: LTR retroelement expansion of the human cancer transcriptome and immunopeptidome revealed by de novo transcript assembly. Genome Res. 29:1578–1590. 2019. View Article : Google Scholar | |
Laumont CM, Daouda T, Laverdure JP, Bonneil É, Caron-Lizotte O, Hardy MP, Granados DP, Durette C, Lemieux S, Thibault P and Perreault C: Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames. Nat Commun. 7:102382016. View Article : Google Scholar | |
Zhu Y, Orre LM, Johansson HJ, Huss M, Boekel J, Vesterlund M, Fernandez-Woodbridge A, Branca RMM and Lehtiö J: Discovery of coding regions in the human genome by integrated proteogenomics analysis workflow. Nat Commun. 9:9032018. View Article : Google Scholar | |
Montesion M, Williams ZH, Subramanian RP, Kuperwasser C and Coffin JM: Promoter expression of HERV-K (HML-2) provirus-derived sequences is related to LTR sequence variation and polymorphic transcription factor binding sites. Retrovirology. 15:572018. View Article : Google Scholar | |
Knossl M, Lower R and Lower J: Expression of the human endogenous retrovirus HTDV/HERV-K is enhanced by cellular transcription factor YY1. J Virol. 73:1254–1261. 1999. View Article : Google Scholar | |
Ohtani H, Liu M, Zhou W, Liang G and Jones PA: Switching roles for DNA and histone methylation depend on evolutionary ages of human endogenous retroviruses. Genome Res. 28:1147–1157. 2018. View Article : Google Scholar | |
Gonzalez-Hernandez MJ, Cavalcoli JD, Sartor MA, Contreras-Galindo R, Meng F, Dai M, Dube D, Saha AK, Gitlin SD, Omenn GS, et al: Regulation of the human endogenous retrovirus K (HML-2) transcriptome by the HIV-1 Tat protein. J Virol. 88:8924–8935. 2014. View Article : Google Scholar | |
Conti A, Rota F, Ragni E, Favero C, Motta V, Lazzari L, Bollati V, Fustinoni S and Dieci G: Hydroquinone induces DNA hypomethylation-independent overexpression of retroelements in human leukemia and hematopoietic stem cells. Biochem Biophys Res Commun. 474:691–695. 2016. View Article : Google Scholar | |
Subramanian RP, Wildschutte JH, Russo C and Coffin JM: Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. Retrovirology. 8:902011. View Article : Google Scholar | |
Liang Q, Ding J, Xu R, Xu Z and Zheng S: Identification of a novel human endogenous retrovirus and promoter activity of its 5′ U3. Biochem Biophys Res Commun. 382:468–472. 2009. View Article : Google Scholar | |
Fuchs NV, Kraft M, Tondera C, Hanschmann KM, Löwer J and Löwer R: Expression of the human endogenous retrovirus (HERV) group HML-2/HERV-K does not depend on canonical promoter elements but is regulated by transcription factors Sp1 and Sp3. J Virol. 85:3436–3448. 2011. View Article : Google Scholar | |
Yu H, Liu T, Zhao Z, Chen Y, Zeng J, Liu S and Zhu F: Mutations in 3′-long terminal repeat of HERV-W family in chromosome 7 upregulate syncytin-1 expression in urothelial cell carcinoma of the bladder through interacting with c-Myb. Oncogene. 33:3947–3958. 2014. View Article : Google Scholar | |
Katoh I, Mírová A, Kurata S, Murakami Y, Horikawa K, Nakakuki N, Sakai T, Hashimoto K, Maruyama A, Yonaga T, et al: Activation of the long terminal repeat of human endogenous retrovirus K by melanoma-specific transcription factor MITF-M. Neoplasia. 13:1081–1092. 2011. View Article : Google Scholar | |
Stacey KJ and Sagulenko V: A clear link between endogenous retroviral LTR activity and Hodgkin's lymphoma. Cell Res. 20:869–871. 2010. View Article : Google Scholar | |
Kriaucionis S and Tahiliani M: Expanding the epigenetic landscape: Novel modifications of cytosine in genomic DNA. Cold Spring Harb Perspect Biol. 6:a0186302014. View Article : Google Scholar | |
Brookes E and Shi Y: Diverse epigenetic mechanisms of human disease. Annu Rev Genet. 48:237–268. 2014. View Article : Google Scholar | |
Lavie L, Kitova M, Maldener E, Meese E and Mayer J: CpG methylation directly regulates transcriptional activity of the human endogenous retrovirus family HERV-K(HML-2). J Virol. 79:876–883. 2005. View Article : Google Scholar | |
Florl AR, Löwer R, Schmitz-Dräger BJ and Schulz WA: DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas. Br J Cancer. 80:1312–1321. 1999. View Article : Google Scholar | |
Menendez L, Benigno BB and McDonald JF: L1 and HERV-W retrotransposons are hypomethylated in human ovarian carcinomas. Mol Cancer. 3:122004. View Article : Google Scholar | |
Stengel S, Fiebig U, Kurth R and Denner J: Regulation of human endogenous retrovirus-K expression in melanomas by CpG methylation. Genes Chromosomes Cancer. 49:401–411. 2010. View Article : Google Scholar | |
Strissel PL, Ruebner M, Thiel F, Wachter D, Ekici AB, Wolf F, Thieme F, Ruprecht K, Beckmann MW and Strick R: Reactivation of codogenic endogenous retroviral (ERV) envelope genes in human endometrial carcinoma and prestages: Emergence of new molecular targets. Oncotarget. 3:1204–1219. 2012. View Article : Google Scholar | |
Hu L, Uzhameckis D, Hedborg F and Blomberg J: Dynamic and selective HERV RNA expression in neuroblastoma cells subjected to variation in oxygen tension and demethylation. APMIS. 124:140–149. 2016. View Article : Google Scholar | |
Bannister AJ and Kouzarides T: Regulation of chromatin by histone modifications. Cell Res. 21:381–395. 2011. View Article : Google Scholar | |
Krönung SK, Beyer U, Chiaramonte ML, Dolfini D, Mantovani R and Dobbelstein M: LTR12 promoter activation in a broad range of human tumor cells by HDAC inhibition. Oncotarget. 7:33484–33497. 2016. View Article : Google Scholar | |
Rajagopalan D, Tirado-Magallanes R, Bhatia SS, Teo WS, Sian S, Hora S, Lee KK, Zhang Y, Jadhav SP, Wu Y, et al: TIP60 represses activation of endogenous retroviral elements. Nucleic Acids Res. 46:9456–9470. 2018. View Article : Google Scholar | |
Sheng W, LaFleur MW, Nguyen TH, Chen S, Chakravarthy A, Conway JR, Li Y, Chen H, Yang H, Hsu PH, et al: LSD1 ablation stimulates anti-tumor immunity and enables checkpoint blockade. Cell. 174:549–563.e19. 2018. View Article : Google Scholar | |
Liu M, Thomas SL, DeWitt AK, Zhou W, Madaj ZB, Ohtani H, Baylin SB, Liang G and Jones PA: Dual inhibition of DNA and histone methyltransferases increases viral mimicry in ovarian cancer cells. Cancer Res. 78:5754–5766. 2018. | |
Audergon PN, Catania S, Kagansky A, Tong P, Shukla M, Pidoux AL and Allshire RC: Epigenetics. Restricted epigenetic inheritance of H3K9 methylation. Science. 348:132–135. 2015. View Article : Google Scholar | |
Matsui T, Leung D, Miyashita H, Maksakova IA, Miyachi H, Kimura H, Tachibana M, Lorincz MC and Shinkai Y: Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature. 464:927–931. 2010. View Article : Google Scholar | |
Sharma S, Gerke DS, Han HF, Jeong S, Stallcup MR, Jones PA and Liang G: Lysine methyltransferase G9a is not required for DNMT3A/3B anchoring to methylated nucleosomes and maintenance of DNA methylation in somatic cells. Epigenetics Chromatin. 5:32012. View Article : Google Scholar | |
Adoue V, Binet B, Malbec A, Fourquet J, Romagnoli P, van Meerwijk JPM, Amigorena S and Joffre OP: The histone methyltransferase SETDB1 controls T helper cell lineage integrity by repressing endogenous retroviruses. Immunity. 50:629–644.e8. 2019. View Article : Google Scholar | |
Imbeault M, Helleboid P-Y and Trono D: KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature. 543:550–554. 2017. View Article : Google Scholar | |
Thomas JH and Schneider S: Coevolution of retroelements and tandem zinc finger genes. Genome Res. 21:1800–1812. 2011. View Article : Google Scholar | |
Voon HPJ and Gibbons RJ: Maintaining memory of silencing at imprinted differentially methylated regions. Cell Mol Life Sci. 73:1871–1879. 2016. View Article : Google Scholar | |
Toufaily C, Landry S, Leib-Mosch C, Rassart E and Barbeau B: Activation of LTRs from different human endogenous retrovirus (HERV) families by the HTLV-1 tax protein and T-cell activators. Viruses. 3:2146–2159. 2011. View Article : Google Scholar | |
Sutkowski N, Conrad B, Thorley-Lawson DA and Huber BT: Epstein-Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity. 15:579–589. 2001. View Article : Google Scholar | |
Karimi A, Sheervalilou R and Kahroba H: A new insight on activation of human endogenous retroviruses (HERVs) in malignant melanoma upon exposure to CuSO4. Biol Trace Elem Res. 191:70–74. 2019. View Article : Google Scholar | |
Alqahtani S, Promtong P, Oliver AW, He XT, Walker TD, Povey A, Hampson L and Hampson IN: Silver nanoparticles exhibit size-dependent differential toxicity and induce expression of syncytin-1 in FA-AML1 and MOLT-4 leukaemia cell lines. Mutagenesis. 31:695–702. 2016. View Article : Google Scholar | |
Reiche J, Pauli G and Ellerbrok H: Differential expression of human endogenous retrovirus K transcripts in primary human melanocytes and melanoma cell lines after UV irradiation. Melanoma Res. 20:435–440. 2010. | |
Tsilimigras MC, Fodor A and Jobin C: Carcinogenesis and therapeutics: The microbiota perspective. Nat Microbiol. 2:170082017. View Article : Google Scholar | |
Simanshu DK, Nissley DV and McCormick F: RAS proteins and their regulators in human disease. Cell. 170:17–33. 2017. View Article : Google Scholar | |
Vieler M and Sanyal S: p53 Isoforms and their implications in cancer. Cancers (Basel). 10:2882018. View Article : Google Scholar | |
McLane LM, Abdel-Hakeem MS and Wherry EJ: CD8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol. 37:457–495. 2019. View Article : Google Scholar | |
Chan SL, Wong VW, Qin S and Chan HL: Infection and cancer: The case of hepatitis B. J Clin Oncol. 34:83–90. 2016. View Article : Google Scholar | |
Roden RBS and Stern PL: Opportunities and challenges for human papillomavirus vaccination in cancer. Nat Rev Cancer. 18:240–254. 2018. View Article : Google Scholar | |
Cianciolo GJ, Copeland TD, Oroszlan S and Snyderman R: Inhibition of lymphocyte proliferation by a synthetic peptide homologous to retroviral envelope proteins. Science. 230:453–455. 1985. View Article : Google Scholar | |
Mangeney M, de Parseval N, Thomas G and Heidmann T: The full-length envelope of an HERV-H human endogenous retrovirus has immunosuppressive properties. J Gen Virol. 82:2515–2518. 2001. View Article : Google Scholar | |
Hummel J, Kämmerer U, Müller N, Avota E and Schneider-Schaulies S: Human endogenous retrovirus envelope proteins target dendritic cells to suppress T-cell activation. Eur J Immunol. 45:1748–1759. 2015. View Article : Google Scholar | |
Lv H, Han J, Liu J, Zheng J, Zhong D and Liu R: ISDTool: A computational model for predicting immunosuppressive domain of HERVs. Comput Biol Chem. 49:45–50. 2014. View Article : Google Scholar | |
Kraus B, Fischer K, Büchner SM, Wels WS, Löwer R, Sliva K and Schnierle BS: Vaccination directed against the human endogenous retrovirus-K envelope protein inhibits tumor growth in a murine model system. PLoS One. 8:e727562013. View Article : Google Scholar | |
Wang-Johanning F, Rycaj K, Plummer JB, Li M, Yin B, Frerich K, Garza JG, Shen J, Lin K, Yan P, et al: Immunotherapeutic potential of anti-human endogenous retrovirus-K envelope protein antibodies in targeting breast tumors. J Natl Cancer Inst. 104:189–210. 2012. View Article : Google Scholar | |
Kim HJ, Moon BI, Lee JW, Kim SC and Kim HJ: Age-related reduction of antibody response against the human endogenous retrovirus K envelope in women. Oncotarget. 7:17327–17337. 2016. View Article : Google Scholar | |
Mastrangelo G, Pavanello S, Fadda E, Buja A and Fedeli U: Yellow fever vaccine 17D administered to healthy women aged between 40 and 54 years halves breast cancer risk: An observational study. Eur J Cancer Prev. 27:303–309. 2018. View Article : Google Scholar | |
Zhou F, Krishnamurthy J, Wei Y, Li M, Hunt K, Johanning GL, Cooper LJ and Wang-Johanning F: Chimeric antigen receptor T cells targeting HERV-K inhibit breast cancer and its metastasis through downregulation of Ras. Oncoimmunology. 4:e10475822015. View Article : Google Scholar | |
Wang Z, Zheng Y, Park HJ, Li J, Carr JR, Chen YJ, Kiefer MM, Kopanja D, Bagchi S, Tyner AL and Raychaudhuri P: Targeting FoxM1 effectively retards p53-null lymphoma and sarcoma. Mol Cancer Ther. 12:759–767. 2013. View Article : Google Scholar | |
von Lintig FC, Dreilinger AD, Varki NM, Wallace AM, Casteel DE and Boss GR: Ras activation in human breast cancer. Breast Cancer Res Treat. 62:51–62. 2000. View Article : Google Scholar | |
Lemaître C, Tsang J, Bireau C, Heidmann T and Dewannieux M: A human endogenous retrovirus-derived gene that can contribute to oncogenesis by activating the ERK pathway and inducing migration and invasion. PLoS Pathog. 13:e10064512017. View Article : Google Scholar | |
Bjerregaard B, Holck S, Christensen IJ and Larsson LI: Syncytin is involved in breast cancer-endothelial cell fusions. Cell Mol Life Sci. 63:1906–1911. 2006. View Article : Google Scholar | |
Duelli D and Lazebnik Y: Cell fusion: A hidden enemy? Cancer Cell. 3:445–448. 2003. View Article : Google Scholar | |
Anderson MJ and Stanbridge EJ: Tumor suppressor genes studied by cell hybridization and chromosome transfer. FASEB J. 7:826–833. 1993. View Article : Google Scholar | |
Köhler G and Milstein C: Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 256:495–497. 1975. View Article : Google Scholar | |
Li N, Li Y, Lv J, Zheng X, Wen H, Shen H, Zhu G, Chen TY, Dhar SS, Kan PY, et al: ZMYND8 reads the dual histone mark H3K4me1-H3K14ac to antagonize the expression of metastasis-linked genes. Mol Cell. 63:470–484. 2016. View Article : Google Scholar | |
Jin X, Xu XE, Jiang YZ, Liu YR, Sun W, Guo YJ, Ren YX, Zuo WJ, Hu X, Huang SL, et al: The endogenous retrovirus-derived long noncoding RNA TROJAN promotes triple-negative breast cancer progression via ZMYND8 degradation. Sci Adv. 5:eaat98202019. View Article : Google Scholar | |
Galiè M: RAS as supporting actor in breast cancer. Front Oncol. 9:11992019. View Article : Google Scholar | |
Kaufmann S, Sauter M, Schmitt M, Baumert B, Best B, Boese A, Roemer K and Mueller-Lantzsch N: Human endogenous retrovirus protein Rec interacts with the testicular zinc-finger protein and androgen receptor. J Gen Virol. 91:1494–1502. 2010. View Article : Google Scholar | |
Benešová M, Trejbalová K, Kovářová D, Vernerová Z, Hron T, Kučerová D and Hejnar J: DNA hypomethylation and aberrant expression of the human endogenous retrovirus ERVWE1/syncytin-1 in seminomas. Retrovirology. 14:202017. View Article : Google Scholar | |
Jiang B, Yang B, Wang Q, Zheng X, Guo Y and Lu W: lncRNA PVT1 promotes hepatitis B virus-positive liver cancer progression by disturbing histone methylation on the c-Myc promoter. Oncol Rep. 43:718–726. 2020. | |
de Souza CR, Leal MF, Calcagno DQ, Costa Sozinho EK, Borges Bdo N, Montenegro RC, Dos Santos AK, Dos Santos SE, Ribeiro HF, Assumpção PP, et al: MYC deregulation in gastric cancer and its clinicopathological implications. PLoS One. 8:e644202013. View Article : Google Scholar | |
Denne M, Sauter M, Armbruester V, Licht JD, Roemer K and Mueller-Lantzsch N: Physical and functional interactions of human endogenous retrovirus proteins Np9 and rec with the promyelocytic leukemia zinc finger protein. J Virol. 81:5607–5616. 2007. View Article : Google Scholar | |
Hanke K, Chudak C, Kurth R and Bannert N: The Rec protein of HERV-K(HML-2) upregulates androgen receptor activity by binding to the human small glutamine-rich tetratricopeptide repeat protein (hSGT). Int J Cancer. 132:556–567. 2013. View Article : Google Scholar | |
Armbruester V, Sauter M, Roemer K, Best B, Hahn S, Nty A, Schmid A, Philipp S, Mueller A and Mueller-Lantzsch N: Np9 protein of human endogenous retrovirus K interacts with ligand of numb protein X. J Virol. 78:10310–10319. 2004. View Article : Google Scholar | |
Shao X, Ding Z, Zhao M, Liu K, Sun H, Chen J, Liu X, Zhang Y, Hong Y and Li H and Li H: Mammalian Numb protein antagonizes Notch by controlling postendocytic trafficking of the Notch ligand Delta-like 4. J Biol Chem. 292:20628–20643. 2017. View Article : Google Scholar | |
Fischer S, Echeverría N, Moratorio G, Landoni AI, Dighiero G, Cristina J, Oppezzo P and Moreno P: Human endogenous retrovirus np9 gene is over expressed in chronic lymphocytic leukemia patients. Leuk Res Rep. 3:70–72. 2014. | |
Hu Y, Chen Y, Douglas L and Li S: beta-Catenin is essential for survival of leukemic stem cells insensitive to kinase inhibition in mice with BCR-ABL-induced chronic myeloid leukemia. Leukemia. 23:109–116. 2009. View Article : Google Scholar | |
Polak R and Buitenhuis M: The PI3K/PKB signaling module as key regulator of hematopoiesis: Implications for therapeutic strategies in leukemia. Blood. 119:911–923. 2012. View Article : Google Scholar | |
Wu B, Gan Y, Xu Y, Wu Z, Xu G, Wang P, Wang C, Meng Z, Li M, Zhang J, et al: Identification of the novel Np17 oncogene in human leukemia. Aging (Albany NY). 12:2020. | |
Chen J, Foroozesh M and Qin Z: Transactivation of human endogenous retroviruses by tumor viruses and their functions in virus-associated malignancies. Oncogenesis. 8:62019. View Article : Google Scholar | |
Gabaev I, Williamson JC, Crozier TWM, Schulz TF and Lehner PJ: Quantitative proteomics analysis of lytic KSHV infection in human endothelial cells reveals targets of viral immune modulation. Cell Rep. 33:1082492020. View Article : Google Scholar | |
Wang-Johanning F, Li M, Esteva FJ, Hess KR, Yin B, Rycaj K, Plummer JB, Garza JG, Ambs S and Johanning GL: Human endogenous retrovirus type K antibodies and mRNA as serum biomarkers of early-stage breast cancer. Int J Cancer. 134:587–595. 2014. View Article : Google Scholar | |
Tokuyama M, Kong Y, Song E, Jayewickreme T, Kang I and Iwasaki A: ERVmap analysis reveals genome-wide transcription of human endogenous retroviruses. Proc Natl Acad Sci USA. 115:12565–12572. 2018. View Article : Google Scholar | |
Mullins CS and Linnebacher M: Endogenous retrovirus sequences as a novel class of tumor-specific antigens: An example of HERV-H env encoding strong CTL epitopes. Cancer Immunol Immunother. 61:1093–1100. 2012. View Article : Google Scholar | |
Wang-Johanning F, Radvanyi L, Rycaj K, Plummer JB, Yan P, Sastry KJ, Piyathilake CJ, Hunt KK and Johanning GL: Human endogenous retrovirus K triggers an antigen-specific immune response in breast cancer patients. Cancer Res. 68:5869–5877. 2008. View Article : Google Scholar | |
Kudo-Saito C, Yura M, Yamamoto R and Kawakami Y: Induction of immunoregulatory CD271+ cells by metastatic tumor cells that express human endogenous retrovirus H. Cancer Res. 74:1361–1370. 2014. View Article : Google Scholar | |
Humer J, Waltenberger A, Grassauer A, Kurz M, Valencak J, Rapberger R, Hahn S, Löwer R, Wolff K, Bergmann M, et al: Identification of a melanoma marker derived from melanoma-associated endogenous retroviruses. Cancer Res. 66:1658–1663. 2006. View Article : Google Scholar | |
Reis BS, Jungbluth AA, Frosina D, Holz M, Ritter E, Nakayama E, Ishida T, Obata Y, Carver B, Scher H, et al: Prostate cancer progression correlates with increased humoral immune response to a human endogenous retrovirus GAG protein. Clin Cancer Res. 19:6112–6125. 2013. View Article : Google Scholar | |
Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, Hein A, Rote NS, Cope LM, Snyder A, et al: Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell. 162:974–986. 2015. View Article : Google Scholar | |
Roulois D, Loo Yau H, Singhania R, Wang Y, Danesh A, Shen SY, Han H, Liang G, Jones PA, Pugh TJ, et al: DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell. 162:961–973. 2015. View Article : Google Scholar | |
Haffner MC, Taheri D, Luidy-Imada E, Palsgrove DN, Eich ML, Netto GJ, Matoso A, Nirschl TR, Zheng Q, Hicks JL, et al: Hypomethylation, endogenous retrovirus expression, and interferon signaling in testicular germ cell tumors. Proc Natl Acad Sci USA. 115:E8580–E8582. 2018. View Article : Google Scholar | |
Argaw-Denboba A, Balestrieri E, Serafino A, Cipriani C, Bucci I, Sorrentino R, Sciamanna I, Gambacurta A, Sinibaldi-Vallebona P and Matteucci C: HERV-K activation is strictly required to sustain CD133+ melanoma cells with stemness features. J Exp Clin Cancer Res. 36:202017. View Article : Google Scholar | |
Saini SK, Ørskov AD, Bjerregaard AM, Unnikrishnan A, Holmberg-Thydén S, Borch A, Jensen KV, Anande G, Bentzen AK, Marquard AM, et al: Human endogenous retroviruses form a reservoir of T cell targets in hematological cancers. Nat Commun. 11:56602020. View Article : Google Scholar | |
Tatkiewicz W, Dickie J, Bedford F, Jones A, Atkin M, Kiernan M, Maze EA, Agit B, Farnham G, Kanapin A and Belshaw R: Characterising a human endogenous retrovirus(HERV)-derived tumour-associated antigen: Enriched RNA-Seq analysis of HERV-K(HML-2) in mantle cell lymphoma cell lines. Mob DNA. 11:92020. View Article : Google Scholar | |
Ficial M, Jegede OA, Sant'Angelo M, Hou Y, Flaifel A, Pignon JC, Braun DA, Wind-Rotolo M, Sticco-Ivins M, Catalano PJ, et al: Expression of T-cell exhaustion molecules and human endogenous retroviruses as predictive biomarkers for response to nivolumab in metastatic clear cell renal cell carcinoma. Clin Cancer Res. 30842020. | |
Siebenthall KT, Miller CP, Vierstra JD, Mathieu J, Tretiakova M, Reynolds A, Sandstrom R, Rynes E, Haugen E, Johnson A, et al: Integrated epigenomic profiling reveals endogenous retrovirus reactivation in renal cell carcinoma. EBioMedicine. 41:427–442. 2019. View Article : Google Scholar |