Function of p21 and its therapeutic effects in esophageal cancer (Review)
- Authors:
- Lei Wang
- Huiqiong Han
- Lin Dong
- Zehua Wang
- Yanru Qin
-
Affiliations: Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China - Published online on: December 20, 2020 https://doi.org/10.3892/ol.2020.12397
- Article Number: 136
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qu X, Ben Q and Jiang Y: Consumption of red and processed meat and risk for esophageal squamous cell carcinoma based on a meta-analysis. Ann Epidemiol. 23:762–770.e1. 2013. View Article : Google Scholar : PubMed/NCBI | |
Prabhu A, Obi KO and Rubenstein JH: The synergistic effects of alcohol and tobacco consumption on the risk of esophageal squamous cell carcinoma: A meta-analysis. Am J Gastroenterol. 109:822–827. 2014. View Article : Google Scholar : PubMed/NCBI | |
Andrici J and Eslick GD: Hot food and beverage consumption and the risk of esophageal cancer: A meta-analysis. Am J Prev Med. 49:952–960. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu C, Wang Z, Song X, Feng XS, Abnet CC, He J, Hu N, Zuo XB, Tan W, Zhan Q, et al: Joint analysis of three genome-wide association studies of esophageal squamous cell carcinoma in Chinese populations. Nat Genet. 46:1001–1006. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang SM, Abnet CC and Qiao YL: What have we learned from Linxian esophageal cancer etiological studies? Thorac Cancer. 10:1036–1042. 2019. View Article : Google Scholar : PubMed/NCBI | |
Spechler SJ: Barrett's esophagus. Curr Opin Gastroenterol. 15:352–358. 1999. View Article : Google Scholar : PubMed/NCBI | |
Woodward TA, Klingler PD, Genko PV and Wolfe JT: Barrett's esophagus, apoptosis and cell cycle regulation: Correlation of p53 with Bax, Bcl-2 and p21 protein expression. Anticancer Res. 20:2427–2432. 2000.PubMed/NCBI | |
Hong Y and Ding ZY: PD-1 inhibitors in the advanced esophageal cancer. Front Pharmacol. 10:14182019. View Article : Google Scholar : PubMed/NCBI | |
Pennathur A, Gibson MK, Jobe BA and Luketich JD: Oesophageal carcinoma. Lancet. 381:400–412. 2013. View Article : Google Scholar : PubMed/NCBI | |
el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW and Vogelstein B: WAF1, a potential mediator of p53 tumor suppression. Cell. 75:817–825. 1993. View Article : Google Scholar : PubMed/NCBI | |
Harper JW, Adami GR, Wei N, Keyomarsi K and Elledge SJ: The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 75:805–816. 1993. View Article : Google Scholar : PubMed/NCBI | |
Petroni G, Formenti SC, Chen-Kiang S and Galluzzi L: Immunomodulation by anticancer cell cycle inhibitors. Nat Rev Immunol. 20:669–679. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Miao Y, Shang M, Liu M, Liu R, Pan E, Pu Y and Yin L: LincRNA-p21 leads to G1 arrest by p53 pathway in esophageal squamous cell carcinoma. Cancer Manag Res. 11:6201–6214. 2019. View Article : Google Scholar : PubMed/NCBI | |
Georgakilas AG, Martin OA and Bonner WM: p21: A two-faced genome guardian. Trends Mol Med. 23:310–319. 2017. View Article : Google Scholar : PubMed/NCBI | |
Evans T, Rosenthal ET, Youngblom J, Distel D and Hunt T: Cyclin: A protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell. 33:389–396. 1983. View Article : Google Scholar : PubMed/NCBI | |
Bloom J and Cross FR: Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol. 8:149–160. 2007. View Article : Google Scholar : PubMed/NCBI | |
LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS, Fattaey A and Harlow E: New functional activities for the p21 family of CDK inhibitors. Genes Dev. 11:847–862. 1997. View Article : Google Scholar : PubMed/NCBI | |
Waga S and Stillman B: The DNA replication fork in eukaryotic cells. Annu Rev Biochem. 67:721–751. 1998. View Article : Google Scholar : PubMed/NCBI | |
Celis JE, Madsen P, Celis A, Nielsen HV and Gesser B: Cyclin (PCNA, auxiliary protein of DNA polymerase delta) is a central component of the pathway(s) leading to DNA replication and cell division. FEBS Lett. 220:1–7. 1987. View Article : Google Scholar : PubMed/NCBI | |
Podust VN, Podust LM, Goubin F, Ducommun B and Hübscher U: Mechanism of inhibition of proliferating cell nuclear antigen-dependent DNA synthesis by the cyclin-dependent kinase inhibitor p21. Biochemistry. 34:8869–8875. 1995. View Article : Google Scholar : PubMed/NCBI | |
Waga S, Hannon GJ, Beach D and Stillman B: The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature. 369:574–578. 1994. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Xiong Y and Beach D: Proliferating cell nuclear antigen and p21 are components of multiple cell cycle kinase complexes. Mol Biol Cell. 4:897–906. 1993. View Article : Google Scholar : PubMed/NCBI | |
Asada M, Yamada T, Ichijo H, Delia D, Miyazono K, Fukumuro K and Mizutani S: Apoptosis inhibitory activity of cytoplasmic p21(Cip1/WAF1) in monocytic differentiation. EMBO J. 18:1223–1234. 1999. View Article : Google Scholar : PubMed/NCBI | |
Tanaka H, Yamashita T, Asada M, Mizutani S, Yoshikawa H and Tohyama M: Cytoplasmic p21(Cip1/WAF1) regulates neurite remodeling by inhibiting Rho-kinase activity. J Cell Biol. 158:321–329. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhan J, Easton JB, Huang S, Mishra A, Xiao L, Lacy ER, Kriwacki RW and Houghton PJ: Negative regulation of ASK1 by p21Cip1 involves a small domain that includes Serine 98 that is phosphorylated by ASK1 in vivo. Mol Cell Biol. 27:3530–3541. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R and Beach D: p21 is a universal inhibitor of cyclin kinases. Nature. 366:701–704. 1993. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Bishop WR and Liu M: Differential effects of cell cycle regulatory protein p21(WAF1/Cip1) on apoptosis and sensitivity to cancer chemotherapy. Drug Resist Updat. 6:183–195. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Bae S, An S, Park JK, Kim EM, Hwang SG, Kim WJ and Um HD: Cooperative actions of p21WAF1 and p53 induce Slug protein degradation and suppress cell invasion. EMBO Rep. 15:1062–1068. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim EM, Jung CH, Kim J, Hwang SG, Park JK and Um HD: The p53/p21 complex regulates cancer cell invasion and apoptosis by targeting Bcl-2 family proteins. Cancer Res. 77:3092–3100. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lu F, Chen H, Zhou C, Liu S, Guo M, Chen P, Zhuang H, Xie D and Wu S: T-type Ca2+ channel expression in human esophageal carcinomas: A functional role in proliferation. Cell Calcium. 43:49–58. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li H, Zheng D, Zhang B, Liu L, Ou J, Chen W, Xiong S, Gu Y and Yang J: Mir-208 promotes cell proliferation by repressing SOX6 expression in human esophageal squamous cell carcinoma. J Transl Med. 12:1962014. View Article : Google Scholar : PubMed/NCBI | |
Li L, Zhang C, Li X, Lu S and Zhou Y: The candidate tumor suppressor gene ECRG4 inhibits cancer cells migration and invasion in esophageal carcinoma. J Exp Clin Cancer Res. 29:1332010. View Article : Google Scholar : PubMed/NCBI | |
Qin YR, Tang H, Xie F, Liu H, Zhu Y, Ai J, Chen L, Li Y, Kwong DL, Fu L and Guan XY: Characterization of tumor-suppressive function of SOX6 in human esophageal squamous cell carcinoma. Clin Cancer Res. 17:46–55. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Goldstein BG, Chao HH and Katz JP: KLF4 and KLF5 regulate proliferation, apoptosis and invasion in esophageal cancer cells. Cancer Biol Ther. 4:1216–1221. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fan Y, Wang Y, Fu S, Liu D and Lin S: Methylation-regulated ZNF545 inhibits growth of the p53-mutant KYSE150 cell line by inducing p21 and Bax. Exp Ther Med. 18:1563–1570. 2019.PubMed/NCBI | |
Jiang XR, Yu XY, Fan JH, Guo L, Zhu C, Jiang W and Lu SH: RFT2 is overexpressed in esophageal squamous cell carcinoma and promotes tumorigenesis by sustaining cell proliferation and protecting against cell death. Cancer Lett. 353:78–86. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhao N, Huang G, Guo L and Lu SH: ECRG1, a novel candidate of tumor suppressor gene in the esophageal carcinoma, triggers a senescent program in NIH3T3 cells. Exp Biol Med (Maywood). 231:84–90. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jascur T, Brickner H, Salles-Passador I, Barbier V, El Khissiin A, Smith B, Fotedar R and Fotedar A: Regulation of p21(WAF1/CIP1) stability by WISp39, a Hsp90 binding TPR protein. Mol Cell. 17:237–249. 2005. View Article : Google Scholar : PubMed/NCBI | |
Liu G and Lozano G: p21 stability: Linking chaperones to a cell cycle checkpoint. Cancer Cell. 7:113–114. 2005. View Article : Google Scholar : PubMed/NCBI | |
Deng T, Yan G, Song X, Xie L, Zhou Y, Li J, Hu X, Li Z, Hu J, Zhang Y, et al: Deubiquitylation and stabilization of p21 by USP11 is critical for cell-cycle progression and DNA damage responses. Proc Natl Acad Sci USA. 115:4678–4683. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Nacusi L, Sheaff RJ and Liu X: Ubiquitination of p21Cip1/WAF1 by SCFSkp2: Substrate requirement and ubiquitination site selection. Biochemistry. 44:14553–14564. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bornstein G, Bloom J, Sitry-Shevah D, Nakayama K, Pagano M and Hershko A: Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase. J Biol Chem. 278:25752–25757. 2003. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Li X, Tang H, Jiang B, Dou Y, Gorospe M and Wang W: NSUN2-mediated m5C methylation and METTL3/METTL14-mediated m6A methylation cooperatively enhance p21 translation. J Cell Biochem. 118:2587–2598. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lal A, Mazan-Mamczarz K, Kawai T, Yang X, Martindale JL and Gorospe M: Concurrent versus individual binding of HuR and AUF1 to common labile target mRNAs. EMBO J. 23:3092–3102. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Liu L, Wu F, Qiu L, Luo M, Ke Q, Deng X and Luo Z: Clinical and prognostic implications of P21 (WAF1/CIP1) expression in patients with esophageal cancer: A systematic review and meta-analysis. Dis Markers. 2020:65202592020. View Article : Google Scholar : PubMed/NCBI | |
Ishida M, Morita M, Saeki H, Ohga T, Sadanaga N, Watanabe M, Kakeji Y and Maehara Y: Expression of p53 and p21 and the clinical response for hyperthermochemoradiotherapy in patients with squamous cell carcinoma of the esophagus. Anticancer Res. 27:3501–3506. 2007.PubMed/NCBI | |
Kuwahara M, Hirai T, Yoshida K, Yamashita Y, Hihara J, Inoue H and Toge T: p53, p21(Waf1/Cip1) and cyclin D1 protein expression and prognosis in esophageal cancer. Dis Esophagus. 12:116–119. 1999. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Shen LY, Fu H, Dong B, Yang HL, Yan WP, Kang XZ, Dai L, Zhou HT, Yang YB, et al: P21, COX-2, and E-cadherin are potential prognostic factors for esophageal squamous cell carcinoma. Dis Esophagus. 30:1–10. 2017. | |
Nakamura T, Hayashi K, Ota M, Ide H, Takasaki K and Mitsuhashi M: Expression of p21(Waf1/Cip1) predicts response and survival of esophageal cancer patients treated by chemoradiotherapy. Dis Esophagus. 17:315–321. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sohda M, Ishikawa H, Masuda N, Kato H, Miyazaki T, Nakajima M, Fukuchi M, Manda R, Fukai Y, Sakurai H and Kuwano H: Pretreatment evaluation of combined HIF-1alpha, p53 and p21 expression is a useful and sensitive indicator of response to radiation and chemotherapy in esophageal cancer. Int J Cancer. 110:838–844. 2004. View Article : Google Scholar : PubMed/NCBI | |
Heeren PA, Kloppenberg FW, Hollema H, Mulder NH, Nap RE and Plukker JT: Predictive effect of p53 and p21 alteration on chemotherapy response and survival in locally advanced adenocarcinoma of the esophagus. Anticancer Res. 24:2579–2883. 2004.PubMed/NCBI | |
Ingham M and Schwartz GK: Cell-cycle therapeutics come of age. J Clin Oncol. 35:2949–2959. 2017. View Article : Google Scholar : PubMed/NCBI | |
Clark AS, Karasic TB, DeMichele A, Vaughn DJ, O'Hara M, Perini R, Zhang P, Lal P, Feldman M, Gallagher M and O'Dwyer PJ: Palbociclib (PD0332991)-a selective and potent cyclin-dependent kinase inhibitor: A review of pharmacodynamics and clinical development. JAMA Oncol. 2:253–260. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yin X, Zhang R, Feng C, Zhang J, Liu D, Xu K, Wang X, Zhang S, Li Z, Liu X and Ma H: Diallyl disulfide induces G2/M arrest and promotes apoptosis through the p53/p21 and MEK-ERK pathways in human esophageal squamous cell carcinoma. Oncol Rep. 32:1748–1756. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhong D, Gu C, Shi L, Xun T, Li X, Liu S and Yu L: Obatoclax induces G1/G0-phase arrest via p38/p21(waf1/Cip1) signaling pathway in human esophageal cancer cells. J Cell Biochem. 115:1624–1635. 2014. View Article : Google Scholar : PubMed/NCBI | |
Deng X, Sheng J, Liu H, Wang N, Dai C, Wang Z, Zhang J, Zhao J and Dai E: Cinobufagin promotes cell cycle arrest and apoptosis to block human esophageal squamous cell carcinoma cells growth via the p73 signalling pathway. Biol Pharm Bull. 42:1500–1509. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li S, Shen XY, Ouyang T, Qu Y, Luo T and Wang HQ: Synergistic anticancer effect of combined crocetin and cisplatin on KYSE-150 cells via p53/p21 pathway. Cancer Cell Int. 17:982017. View Article : Google Scholar : PubMed/NCBI | |
Liu YM, Liu YK, Huang PI, Tsai TH and Chen YJ: Antrodia cinnamomea mycelial fermentation broth inhibits the epithelial-mesenchymal transition of human esophageal adenocarcinoma cancer cells. Food Chem Toxicol. 119:380–386. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guo L, Lv G, Qiu L, Yang H, Zhang L, Yu H, Zou M and Lin J: Insights into anticancer activity and mechanism of action of a ruthenium(II) complex in human esophageal squamous carcinoma EC109 cells. Eur J Pharmacol. 786:60–71. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hua P, Sun M, Zhang G, Zhang Y, Song G, Liu Z, Li X, Zhang X and Li B: Costunolide induces apoptosis through generation of ROS and activation of P53 in human esophageal cancer Eca-109 cells. J Biochem Mol Toxicol. 30:462–469. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jiang JH, Pi J, Jin H and Cai JY: Oridonin-induced mitochondria-dependent apoptosis in esophageal cancer cells by inhibiting PI3K/AKT/mTOR and Ras/Raf pathways. J Cell Biochem. 120:3736–3746. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kwak AW, Choi JS, Liu K, Lee MH, Jeon YJ, Cho SS, Yoon G, Oh HN, Chae JI and Shim JH: Licochalcone C induces cell cycle G1 arrest and apoptosis in human esophageal squamous carcinoma cells by activation of the ROS/MAPK signaling pathway. J Chemother. 32:132–143. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu YM, Liu YK, Wang LW, Huang YC, Huang PI, Tsai TH and Chen YJ: The medicinal fungus Antrodia cinnamomea regulates DNA repair and enhances the radiosensitivity of human esophageal cancer cells. Onco Targets Ther. 9:6651–6661. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tzao C, Jin JS, Chen BH, Chung HY, Chang CC, Hsu TY and Sun GH: Anticancer effects of suberoylanilide hydroxamic acid in esophageal squamous cancer cells in vitro and in vivo. Dis Esophagus. 27:693–702. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang JF, Feng JG, Han J, Zhang BB and Mao WM: The molecular mechanisms of Tanshinone IIA on the apoptosis and arrest of human esophageal carcinoma cells. Biomed Res Int. 2014:5827302014.PubMed/NCBI | |
Ma J, Zhang Y, Deng H, Liu Y, Lei X, He P and Dong W: Thymoquinone inhibits the proliferation and invasion of esophageal cancer cells by disrupting the AKT/GSK-3β/Wnt signaling pathway via PTEN upregulation. Phytother Res. Sep 9–2020.(Epub ahead of print). doi: 10.1002/ptr.6795. View Article : Google Scholar | |
Galanos P, Vougas K, Walter D, Polyzos A, Maya-Mendoza A, Haagensen EJ, Kokkalis A, Roumelioti FM, Gagos S, Tzetis M, et al: Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat Cell Biol. 18:777–789. 2016. View Article : Google Scholar : PubMed/NCBI | |
El-Deiry WS: p21(WAF1) mediates cell-cycle inhibition, relevant to cancer suppression and therapy. Cancer Res. 76:5189–5191. 2016. View Article : Google Scholar : PubMed/NCBI |