1
|
Torre LA, Islami F, Siegel RL, Ward EM and
Jemal A: Global Cancer in Women: Burden and Trends. Cancer
Epidemiol Biomarkers Prev. 26:444–457. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yoo KY, Kang D, Park SK, Kim SU, Kim SU,
Shin A, Yoon H, Ahn SH, Noh DY and Choe KJ: Epidemiology of breast
cancer in Korea: Occurrence, high-risk groups, and prevention. J
Korean Med Sci. 17:1–6. 2002. View Article : Google Scholar : PubMed/NCBI
|
3
|
Park B, Park S, Shin HR, Shin A, Yeo Y,
Choi JY, Jung KW, Kim BG, Kim YM, Noh DY, et al: Erratum to:
Population attributable risks of modifiable reproductive factors
for breast and ovarian cancers in Korea. BMC Cancer.
16:1812016.Erratum for: BMC Cancer 16: 5, 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Irving M, Elmslie F and Berg J: 18.
Genetics of breast cancer. Int J Clin Pract. 56:677–682.
2002.PubMed/NCBI
|
5
|
Radice D and Redaelli A: Breast cancer
management: Quality-of-life and cost considerations.
Pharmacoeconomics. 21:383–396. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Osborne CK: Tamoxifen in the treatment of
breast cancer. N Engl J Med. 339:1609–1618. 1998. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zeeshan R and Mutahir Z: Cancer metastasis
- tricks of the trade. Bosn J Basic Med Sci. 17:172–182.
2017.PubMed/NCBI
|
8
|
Liao TT and Yang MH: Revisiting
epithelial-mesenchymal transition in cancer metastasis: The
connection between epithelial plasticity and stemness. Mol Oncol.
11:792–804. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yeung KT and Yang J:
Epithelial-mesenchymal transition in tumor metastasis. Mol Oncol.
11:28–39. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Gloushankova NA, Zhitnyak IY and Rubtsova
SN: Role of epithelial-mesenchymal transition in tumor progression.
Biochemistry (Mosc). 83:1469–1476. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yu H, Shen Y, Hong J, Xia Q, Zhou F and
Liu X: The contribution of TGF-β in Epithelial-Mesenchymal
Transition (EMT): Down-regulation of E-cadherin via snail.
Neoplasma. 62:1–15. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Patel K and Patel DK: Medicinal
importance, pharmacological activities, and analytical aspects of
hispidulin: A concise report. J Tradit Complement Med. 7:360–366.
2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lee SG, Kim JS, Min K, Kwon TK and Nam JO:
Hispidulin inhibits adipogenesis in 3T3-L1 adipocytes through PPARγ
pathway. Chem Biol Interact. 293:89–93. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Dabaghi-Barbosa P, Mariante Rocha A,
Franco da Cruz Lima A, Heleno de Oliveira B, Benigna Martinelli de
Oliveira M, Gunilla Skare Carnieri E, Cadena SM and Eliane Merlin
Rocha M: Hispidulin: Antioxidant properties and effect on
mitochondrial energy metabolism. Free Radic Res. 39:1305–1315.
2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chulasiri M, Bunyapraphatsara N and
Moongkarndi P: Mutagenicity and antimutagenicity of hispidulin and
hortensin, the flavonoids from Millingtonia hortensis L.
Environ Mol Mutagen. 20:307–312. 1992. View Article : Google Scholar : PubMed/NCBI
|
16
|
Clavin M, Gorzalczany S, Macho A, Muñoz E,
Ferraro G, Acevedo C and Martino V: Anti-inflammatory activity of
flavonoids from Eupatorium arnottianum. J Ethnopharmacol.
112:585–589. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gao H, Xie J, Peng J, Han Y, Jiang Q, Han
M and Wang C: Hispidulin inhibits proliferation and enhances
chemosensitivity of gallbladder cancer cells by targeting HIF-1α.
Exp Cell Res. 332:236–246. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Walesiuk A, Nazaruk J and Braszko JJ:
Pro-cognitive effects of Cirsium rivulare extracts in rats. J
Ethnopharmacol. 129:261–266. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Niu X, Chen J, Wang P, Zhou H, Li S and
Zhang M: The effects of hispidulin on bupivacaine-induced
neurotoxicity: Role of AMPK signaling pathway. Cell Biochem
Biophys. 70:241–249. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhou R, Wang Z and Ma C: Hispidulin exerts
anti-osteoporotic activity in ovariectomized mice via activating
AMPK signaling pathway. Cell Biochem Biophys. 69:311–317. 2014.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Yang L, Yu Z, Qu H and Li M: Comparative
effects of hispidulin, genistein, and icariin with estrogen on bone
tissue in ovariectomized rats. Cell Biochem Biophys. 70:485–490.
2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lee J: 3,3′-Diindolylmethane inhibits
TNF-α- and TGF-β-induced epithelial-mesenchymal transition in
breast cancer cells. Nutr Cancer. 71:992–1006. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2-ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI
|
24
|
Massagué J and Chen YG: Controlling
TGF-beta signaling. Genes Dev. 14:627–644. 2000.PubMed/NCBI
|
25
|
Gorsch SM, Memoli VA, Stukel TA, Gold LI
and Arrick BA: Immunohistochemical staining for transforming growth
factor beta 1 associates with disease progression in human breast
cancer. Cancer Res. 52:6949–6952. 1992.PubMed/NCBI
|
26
|
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan
A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The
epithelial-mesenchymal transition generates cells with properties
of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Fuxe J, Vincent T and Garcia de Herreros
A: Transcriptional crosstalk between TGF-β and stem cell pathways
in tumor cell invasion: Role of EMT promoting Smad complexes. Cell
Cycle. 9:2363–2374. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Lee KW, Bode AM and Dong Z: Molecular
targets of phytochemicals for cancer prevention. Nat Rev Cancer.
11:211–218. 2011. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Lv L, Zhang W, Li T, Jiang L, Lu X and Lin
J: Hispidulin exhibits potent anticancer activity in vitro
and in vivo through activating ER stress in non-small-cell
lung cancer cells. Oncol Rep. 43:1995–2003. 2020.PubMed/NCBI
|
30
|
Woo SM, Seo SU, Kim SH, Nam JO, Kim S,
Park JW, Min KJ and Kwon TK: Hispidulin enhances TRAIL-mediated
apoptosis via CaMKKβ/AMPK/USP51 axis-mediated bim stabilization.
Cancers (Basel). 11:19602019. View Article : Google Scholar
|
31
|
Jang HJ, Lee SJ, Kim CY, Hwang JT, Choi
JH, Park JH, Lee SW and Rho MC: Effect of sunlight radiation on the
growth and chemical constituents of Salvia plebeia R.Br.
Molecules. 22:12792017. View Article : Google Scholar
|
32
|
Gao H, Wang H and Peng J: Hispidulin
induces apoptosis through mitochondrial dysfunction and inhibition
of P13k/Akt signalling pathway in HepG2 cancer cells. Cell Biochem
Biophys. 69:27–34. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Han M, Gao H, Xie J, Yuan YP, Yuan Q, Gao
MQ, Liu KL, Chen XH, Han YT and Han ZW: Hispidulin induces ER
stress-mediated apoptosis in human hepatocellular carcinoma cells
in vitro and in vivo by activating AMPK signaling pathway. Acta
Pharmacol Sin. 40:666–676. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Holliday DL and Speirs V: Choosing the
right cell line for breast cancer research. Breast Cancer Res.
13:2152011. View
Article : Google Scholar : PubMed/NCBI
|
35
|
Lou Y, Preobrazhenska O, auf dem Keller U,
Sutcliffe M, Barclay L, McDonald PC, Roskelley C, Overall CM and
Dedhar S: Epithelial-mesenchymal transition (EMT) is not sufficient
for spontaneous murine breast cancer metastasis. Dev Dyn.
237:2755–2768. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wu Y and Zhou BP: New insights of
epithelial-mesenchymal transition in cancer metastasis. Acta
Biochim Biophys Sin (Shanghai). 40:643–650. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Chambers AF, Groom AC and MacDonald IC:
Dissemination and growth of cancer cells in metastatic sites. Nat
Rev Cancer. 2:563–572. 2002. View
Article : Google Scholar : PubMed/NCBI
|
38
|
Heerboth S, Housman G, Leary M, Longacre
M, Byler S, Lapinska K, Willbanks A and Sarkar S: EMT and tumor
metastasis. Clin Transl Med. 4:62015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ricciardi GR, Adamo B, Ieni A, Licata L,
Cardia R, Ferraro G, Franchina T, Tuccari G and Adamo V:
Correction: androgen receptor (AR), E-cadherin, and Ki-67 as
emerging targets and novel prognostic markers in triple-negative
breast cancer (TNBC) patients. PLoS One. 10:e01326472015.Erratum
for: PLoS One 10: e0128368, 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Nishimura N and Sasaki T: Cell-surface
biotinylation to study endocytosis and recycling of occludin.
Methods Mol Biol. 440:89–96. 2008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Martin TA, Jordan N, Davies EL and Jiang
WG: Metastasis to Bone in human cancer is associated with loss of
occludin expression. Anticancer Res. 36:1287–1293. 2016.PubMed/NCBI
|
42
|
Eriksson JE, Dechat T, Grin B, Helfand B,
Mendez M, Pallari HM and Goldman RD: Introducing intermediate
filaments: From discovery to disease. J Clin Invest. 119:1763–1771.
2009. View Article : Google Scholar : PubMed/NCBI
|
43
|
Peuhu E, Virtakoivu R, Mai A, Wärri A and
Ivaska J: Epithelial vimentin plays a functional role in mammary
gland development. Development. 144:4103–4113. 2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Ungefroren H: TGF-β Signaling in cancer:
control by negative regulators and crosstalk with proinflammatory
and fibrogenic pathways. Cancers (Basel). 11:3842019. View Article : Google Scholar
|
45
|
Walker RA and Dearing SJ: Transforming
growth factor beta 1 in ductal carcinoma in situ and invasive
carcinomas of the breast. Eur J Cancer. 28:641–644. 1992.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Grau AM, Wen W, Ramroopsingh DS, Gao YT,
Zi J, Cai Q, Shu XO and Zheng W: Circulating transforming growth
factor-beta-1 and breast cancer prognosis: Results from the
Shanghai Breast Cancer Study. Breast Cancer Res Treat. 112:335–341.
2008. View Article : Google Scholar : PubMed/NCBI
|
47
|
Parvani JG, Taylor MA and Schiemann WP:
Noncanonical TGF-β signaling during mammary tumorigenesis. J
Mammary Gland Biol Neoplasia. 16:127–146. 2011. View Article : Google Scholar : PubMed/NCBI
|
48
|
Xu J, Lamouille S and Derynck R:
TGF-beta-induced epithelial to mesenchymal transition. Cell Res.
19:156–172. 2009. View Article : Google Scholar : PubMed/NCBI
|
49
|
Oft M, Peli J, Rudaz C, Schwarz H, Beug H
and Reichmann E: TGF-beta1 and Ha-Ras collaborate in modulating the
phenotypic plasticity and invasiveness of epithelial tumor cells.
Genes Dev. 10:2462–2477. 1996. View Article : Google Scholar : PubMed/NCBI
|
50
|
Okada H, Ban S, Nagao S, Takahashi H,
Suzuki H and Neilson EG: Progressive renal fibrosis in murine
polycystic kidney disease: An immunohistochemical observation.
Kidney Int. 58:587–597. 2000. View Article : Google Scholar : PubMed/NCBI
|
51
|
Oldfield MD, Bach LA, Forbes JM,
Nikolic-Paterson D, McRobert A, Thallas V, Atkins RC, Osicka T,
Jerums G and Cooper ME: Advanced glycation end products cause
epithelial-myofibroblast transdifferentiation via the receptor for
advanced glycation end products (RAGE). J Clin Invest.
108:1853–1863. 2001. View Article : Google Scholar : PubMed/NCBI
|
52
|
Oloumi A, McPhee T and Dedhar S:
Regulation of E-cadherin expression and beta-catenin/Tcf
transcriptional activity by the integrin-linked kinase. Biochim
Biophys Acta. 1691:1–15. 2004. View Article : Google Scholar : PubMed/NCBI
|
53
|
Colak S and Ten Dijke P: Targeting TGF-β
Signaling in Cancer. Trends Cancer. 3:56–71. 2017. View Article : Google Scholar : PubMed/NCBI
|
54
|
Kennecke H, Yerushalmi R, Woods R, Cheang
MC, Voduc D, Speers CH, Nielsen TO and Gelmon K: Metastatic
behavior of breast cancer subtypes. J Clin Oncol. 28:3271–3277.
2010. View Article : Google Scholar : PubMed/NCBI
|
55
|
Shibue T and Weinberg RA: EMT, CSCs, and
drug resistance: The mechanistic link and clinical implications.
Nat Rev Clin Oncol. 14:611–629. 2017. View Article : Google Scholar : PubMed/NCBI
|
56
|
Al-Hajj M, Becker MW, Wicha M, Weissman I
and Clarke MF: Therapeutic implications of cancer stem cells. Curr
Opin Genet Dev. 14:43–47. 2004. View Article : Google Scholar : PubMed/NCBI
|
57
|
Ashaq A, Maqbool MF, Maryam A, Khan M,
Shakir HA, Irfan M, Qazi JI, Li Y and Ma T: Hispidulin: A novel
natural compound with therapeutic potential against human cancers.
Phytother Res (In press).
|
58
|
Liu K, Zhao F, Yan J, Xia Z, Jiang D and
Ma P: Hispidulin: A promising flavonoid with diverse anti-cancer
properties. Life Sci. 259:1183952020.in press. View Article : Google Scholar : PubMed/NCBI
|
59
|
Scoparo CT, Valdameri G, Worfel PR,
Guterres FA, Martinez GR, Winnischofer SM, Di Pietro A and Rocha
ME: Dual properties of hispidulin: Antiproliferative effects on
HepG2 cancer cells and selective inhibition of ABCG2 transport
activity. Mol Cell Biochem. 409:123–133. 2015. View Article : Google Scholar : PubMed/NCBI
|
60
|
Gao H, Jiang Q, Han Y, Peng J and Wang C:
Hispidulin potentiates the antitumor effect of sunitinib against
human renal cell carcinoma in laboratory models. Cell Biochem
Biophys. 71:757–764. 2015. View Article : Google Scholar : PubMed/NCBI
|
61
|
Wang Y, Liu W, He X and Fei Z: Hispidulin
enhances the anti-tumor effects of temozolomide in glioblastoma by
activating AMPK. Cell Biochem Biophys. 71:701–706. 2015. View Article : Google Scholar : PubMed/NCBI
|
62
|
Yang JM, Hung CM, Fu CN, Lee JC, Huang CH,
Yang MH, Lin CL, Kao JY and Way TD: Hispidulin sensitizes human
ovarian cancer cells to TRAIL-induced apoptosis by AMPK activation
leading to Mcl-1 block in translation. J Agric Food Chem.
58:10020–10026. 2010. View Article : Google Scholar : PubMed/NCBI
|
63
|
Cong Y, Wu S, Han J, Chen J, Liu H, Sun Q,
Wu Y and Fang Y: Pharmacokinetics of homoplantaginin in rats
following intravenous, peritoneal injection and oral
administration. J Pharm Biomed Anal. 129:405–409. 2016. View Article : Google Scholar : PubMed/NCBI
|