1
|
Mizrahi J, Surana R, Valle J and Shroff R:
Pancreatic cancer. Lancet. 395:2008–2020. 2020. View Article : Google Scholar : PubMed/NCBI
|
2
|
National Cancer Institute, ; Bethesda M:
SEER cancer stat facts: Pancreatic cancer. Journal. simplehttps://seer.cancer.gov/statfacts/html/pancreas.htmlDecember
17–2020PubMed/NCBI
|
3
|
Ngo P, Shanshal M and Rojan A:
Immunotherapy in pancreatic cancer and the importance of tumour
testing. BMJ Case Rep. 13:e2357742020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang S, Li Y, Xing C, Ding C, Zhang H,
Chen L, You L, Dai M and Zhao Y: Tumor microenvironment in
chemoresistance, metastasis and immunotherapy of pancreatic cancer.
Am J Cancer Res. 10:1937–1953. 2020.PubMed/NCBI
|
5
|
Christenson E, Jaffee E and Azad N:
Current and emerging therapies for patients with advanced
pancreatic ductal adenocarcinoma: A bright future. Lancet Oncol.
21:e135–e145. 2020. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hennet T, Dinter A, Kuhnert P, Mattu TS,
Rudd PM and Berger EG: Genomic cloning and expression of three
murine UDP-galactose: Beta-N-acetylglucosamine
beta1,3-galactosyltransferase genes. J Biol Chem. 273:58–65. 1998.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Cerhan JR, Ansell SM, Fredericksen ZS, Kay
NE, Liebow M, Call TG, Dogan A, Cunningham JM, Wang AH, Liu-Mares
W, et al: Genetic variation in 1253 immune and inflammation genes
and risk of non-Hodgkin lymphoma. Blood. 110:4455–4463. 2007.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Yeh JC, Hiraoka N, Petryniak B, Nakayama
J, Ellies LG, Rabuka D, Hindsgaul O, Marth JD, Lowe JB and Fukuda
M: Novel sulfated lymphocyte homing receptors and their control by
a Core1 extension beta 1,3-N-acetylglucosaminyltransferase. Cell.
105:957–969. 2001. View Article : Google Scholar : PubMed/NCBI
|
9
|
Shiraishi N, Natsume A, Togayachi A, Endo
T, Akashima T, Yamada Y, Imai N, Nakagawa S, Koizumi S, Sekine S,
et al: Identification and characterization of three novel beta
1,3-N-acetylglucosaminyltransferases structurally related to the
beta 1,3-galactosyltransferase family. J Biol Chem. 276:3498–3507.
2001. View Article : Google Scholar : PubMed/NCBI
|
10
|
Haider S, Wang J, Nagano A, Desai A,
Arumugam P, Dumartin L, Fitzgibbon J, Hagemann T, Marshall JF,
Kocher HM, et al: A multi-gene signature predicts outcome in
patients with pancreatic ductal adenocarcinoma. Genome Med.
6:1052014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ho WL, Che MI, Chou CH, Chang HH, Jeng YM,
Hsu WM, Lin KH and Huang MC: B3GNT3 expression suppresses cell
migration and invasion and predicts favorable outcomes in
neuroblastoma. Cancer Sci. 104:1600–1608. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang W, Hou T, Niu C, Song L and Zhang Y:
B3GNT3 expression is a novel marker correlated with pelvic lymph
node metastasis and poor clinical outcome in early-stage cervical
cancer. PLoS One. 10:e01443602015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Gao L, Zhang H, Zhang B, Zhu J, Chen C and
Liu W: B3GNT3 overexpression is associated with unfavourable
survival in non-small cell lung cancer. J Clin Pathol. 71:642–647.
2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Li CW, Lim SO, Chung EM, Kim YS, Park AH,
Yao J, Cha JH, Xia W, Chan LC, Kim T, et al: Eradication of
triple-negative breast cancer cells by targeting glycosylated
PD-L1. Cancer Cell. 33:187–201 e110. 2018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wester K, Wahlund E, Sundstrom C, Ranefall
P, Bengtsson E, Russell PJ, Ow KT, Malmström PU and Busch C:
Paraffin section storage and immunohistochemistry. Effects of time,
temperature, fixation, and retrieval protocol with emphasis on p53
protein and MIB1 antigen. Appl Immunohistochem Mol Morphol.
8:61–70. 2000. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lucca LE, Lerner BA, Park C, DeBartolo D,
Harnett B, Kumar VP, Ponath G, Raddassi K, Huttner A, Hafler DA and
Pitt D: Differential expression of the T-cell inhibitor TIGIT in
glioblastoma and MS. Neurol Neuroimmunol Neuroinflamm. 7:e7122020.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Ru B, Wong CN, Tong Y, Zhong JY, Zhong
SSW, Wu WC, Chu KC, Wong CY, Lau CY, Chen I, et al: TISIDB: An
integrated repository portal for tumor-immune system interactions.
Bioinformatics. 35:4200–4202. 2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
van Roessel S, Kasumova G, Verheij J,
Najarian RM, Maggino L, de Pastena M, Malleo G, Marchegiani G,
Salvia R, Ng SC, et al: International validation of the eighth
edition of the american joint committee on cancer (AJCC) TNM
staging system in patients with resected pancreatic cancer. JAMA
Surg. 153:e1836172018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chen H, Fu T, Suh WK, Tsavachidou D, Wen
S, Gao J, Tang DN, He Q, Sun J and Sharma P: CD4 T cells require
ICOS-mediated PI3K signaling to increase T-Bet expression in the
setting of anti-CTLA-4 therapy. Cancer Immunol Res. 2:167–176.
2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hong MH, Shin SJ, Shin SK, Kim DJ, Zo JI,
Shim YM, Lee SE, Cho BC, Park SY, Choi YL and Kim HR: High CD3 and
ICOS and low TIM-3 expression predict favourable survival in
resected oesophageal squamous cell carcinoma. Sci Rep. 9:201972019.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang J, He M, Shi W, Sha H, Feng J, Wang S
and Wang Y: Inducible costimulator (ICOS) enhances the cytolytic
activity of cytokine-induced killer cells against gallbladder
cancer in vitro and in vivo. Cancer Invest. 27:244–250. 2009.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Yang J, Liu J, Chen Y, Tang W, Bo K, Sun Y
and Chen J: Investigation of ICOS, CD28 and CD80 polymorphisms with
the risk of hepatocellular carcinoma: A case-control study in
eastern Chinese population. Biosci Rep. 39:BSR201818242019.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Whelan S, Ophir E, Kotturi MF, Levy O,
Ganguly S, Leung L, Vaknin I, Kumar S, Dassa L, Hansen K, et al:
PVRIG and PVRL2 are induced in cancer and inhibit CD8+
T-cell function. Cancer Immunol Res. 7:257–268. 2019. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liang S, Yang Z, Li D, Miao X, Yang L, Zou
Q and Yuan Y: The clinical and pathological significance of
nectin-2 and DDX3 expression in pancreatic ductal adenocarcinomas.
Dis Markers. 2015:3795682015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Oshima T, Sato S, Kato J, Ito Y, Watanabe
T, Tsuji I, Hori A, Kurokawa T and Kokubo T: Nectin-2 is a
potential target for antibody therapy of breast and ovarian
cancers. Molecular Cancer. 12:602013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yang H, Zhang Q, Xu M, Wang L, Chen X,
Feng Y, Li Y, Zhang X, Cui W and Jia X: CCL2-CCR2 axis recruits
tumor associated macrophages to induce immune evasion through PD-1
signaling in esophageal carcinogenesis. Mol Cancer. 19:412020.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Liu Q, Song J, Pan Y, Shi D, Yang C, Wang
S and Xiong B: Wnt5a/CaMKII/ERK/CCL2 axis is required for
tumor-associated macrophages to promote colorectal cancer
progression. Int J Biol Sci. 16:1023–1034. 2020. View Article : Google Scholar : PubMed/NCBI
|
28
|
He M, Yu W, Chang C, Miyamoto H, Liu X,
Jiang K and Yeh S: Estrogen receptor α promotes lung cancer cell
invasion via increase of and cross-talk with infiltrated
macrophages through the CCL2/CCR2/MMP9 and CXCL12/CXCR4 signaling
pathways. Mol Oncol. 14:1779–1799. 2020. View Article : Google Scholar : PubMed/NCBI
|
29
|
Romero JM, Grunwald B, Jang GH, Bavi PP,
Jhaveri A, Masoomian M, Fischer SE, Zhang A, Denroche RE, Lungu IM,
et al: A four-chemokine signature is associated with a
T-cell-inflamed phenotype in primary and metastatic pancreatic
cancer. Clin Cancer Res. 26:1997–2010. 2020. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ko HJ and Kim YJ: Signal transducer and
activator of transcription proteins: Regulators of myeloid-derived
suppressor cell-mediated immunosuppression in cancer. Arch Pharm
Res. 39:1597–1608. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kim BH, Yi EH and Ye SK: Signal transducer
and activator of transcription 3 as a therapeutic target for cancer
and the tumor microenvironment. Arch Pharm Res. 39:1085–1099. 2016.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Wei D, Le X, Zheng L, Wang L, Frey JA, Gao
AC, Peng Z, Huang S, Xiong HQ, Abbruzzese JL and Xie K: Stat3
activation regulates the expression of vascular endothelial growth
factor and human pancreatic cancer angiogenesis and metastasis.
Oncogene. 22:319–329. 2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Scholz A, Heinze S, Detjen KM, Peters M,
Welzel M, Hauff P, Schirner M, Wiedenmann B and Rosewicz S:
Activated signal transducer and activator of transcription 3
(STAT3) supports the malignant phenotype of human pancreatic
cancer. Gastroenterology. 125:891–905. 2003. View Article : Google Scholar : PubMed/NCBI
|