1
|
Johnson DE, Burtness B, Leemans CR, Lui
VWY, Bauman JE and Grandis JR: Head and neck squamous cell
carcinoma. Nat Rev Dis Primers. 6:922020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Dhull AK, Atri R, Dhankhar R, Chauhan AK
and Kaushal V: Major risk factors in head and neck cancer: A
retrospective analysis of 12-year experiences. World J Oncol.
9:80–84. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Plzák J, Bouček J, Bandúrová V, Kolář M,
Hradilová M, Szabo P, Lacina L, Chovanec M and Smetana K Jr: The
head and neck squamous cell carcinoma microenvironment as a
potential target for cancer therapy. Cancers (Basel). 11:4402019.
View Article : Google Scholar
|
4
|
Sabatini ME and Chiocca S: Human
papillomavirus as a driver of head and neck cancers. Br J Cancer.
122:306–314. 2020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Viros Porcuna D, Pollan Guisasola C, Viña
Soria C, Cirauqui Cirauqui B, Pardo Muñoz L, Collurá F and Mesia
Nin R: Transoral robotic surgery for squamous cell carcinoma of the
oropharynx in a primarily human papillomavirus-negative patient
population. Clin Transl Oncol. 22:1303–1311. 2020. View Article : Google Scholar : PubMed/NCBI
|
6
|
Shen Y, Liu J, Zhang L, Dong S, Zhang J,
Liu Y, Zhou H and Dong W: Identification of potential biomarkers
and survival analysis for head and neck squamous cell carcinoma
using bioinformatics strategy: A study based on TCGA and GEO
datasets. Biomed Res Int. 2019:73760342019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yang B, Fu L, Xu S, Xiao J, Li Z and Liu
Y: A nomogram based on a gene signature for predicting the
prognosis of patients with head and neck squamous cell carcinoma.
Int J Biol Markers. 34:309–317. 2019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Langfelder P and Horvath S: WGCNA: An R
package for weighted correlation network analysis. BMC
Bioinformatics. 9:5592008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Song Y, Pan Y and Liu J: The relevance
between the immune response-related gene module and clinical traits
in head and neck squamous cell carcinoma. Cancer Manag Res.
11:7455–7472. 2019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang Z, Liu R, Jin R, Fan Y, Li T, Shuai
Y, Li X, Wang X and Luo J: Integrating clinical and genetic
analysis of perineural invasion in head and neck squamous cell
carcinoma. Front Oncol. 9:4342019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chi J, Preeshagul IR, Sheikh-Fayyaz S,
Teckie S, Kohn N, Ziemba Y, Laser A, Frank D, Ghaly M, Kamdar D, et
al: Evaluating of HPV-DNA ISH as an adjunct to p16 testing in
oropharyngeal cancer. Future Sci OA. 6:FSO6062020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lydiatt WM, Patel SG, O'Sullivan B,
Brandwein MS, Ridge JA, Migliacci JC, Loomis AM and Shah JP: Head
and neck cancers-major changes in the American joint committee on
cancer eighth edition cancer staging manual. CA Cancer J Clin.
67:122–137. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bi N, Sun Y, Lei S, Zeng Z, Zhang Y, Sun C
and Yu C: Identification of 40S ribosomal protein S8 as a novel
biomarker for alcohol-associated hepatocellular carcinoma using
weighted gene co-expression network analysis. Oncol Rep.
44:611–627. 2020. View Article : Google Scholar : PubMed/NCBI
|
14
|
Feng B, Shen Y, Pastor Hostench X, Bieg M,
Plath M, Ishaque N, Eils R, Freier K, Weichert W, Zaoui K and Hess
J: Integrative analysis of multi-omics data identified EGFR and
PTGS2 as key nodes in a gene regulatory network related to immune
phenotypes in head and neck cancer. Clin Cancer Res. 26:3616–3628.
2020. View Article : Google Scholar : PubMed/NCBI
|
15
|
Mes SW, Te Beest D, Poli T, Rossi S,
Scheckenbach K, van Wieringen WN, Brink A, Bertani N, Lanfranco D,
Silini EM, et al: Prognostic modeling of oral cancer by gene
profiles and clinicopathological co-variables. Oncotarget.
8:59312–59323. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kelley DZ, Flam EL, Izumchenko E, Danilova
LV, Wulf HA, Guo T, Singman DA, Afsari B, Skaist AM, Considine M,
et al: Integrated analysis of whole-genome ChIP-Seq and RNA-Seq
data of primary head and neck tumor samples associates HPV
integration sites with open chromatin marks. Cancer Res.
77:6538–6550. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Jethwa AR and Khariwala SS:
Tobacco-related carcinogenesis in head and neck cancer. Cancer
Metastasis Rev. 36:411–423. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Paver EC, Currie AM, Gupta R and Dahlstrom
JE: Human papilloma virus related squamous cell carcinomas of the
head and neck: Diagnosis, clinical implications and detection of
HPV. Pathology. 52:179–191. 2020. View Article : Google Scholar : PubMed/NCBI
|
19
|
Koneva LA, Zhang Y, Virani S, Hall PB,
McHugh JB, Chepeha DB, Wolf GT, Carey TE, Rozek LS and Sartor MA:
HPV Integration in HNSCC correlates with survival outcomes, immune
response signatures, and candidate drivers. Mol Cancer Res.
16:90–102. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Qian X, Nguyen DT, Dong Y, Sinikovic B,
Kaufmann AM, Myers JN, Albers AE and Graviss EA: Prognostic score
predicts survival in HPV-negative head and neck squamous cell
cancer patients. Int J Biol Sci. 15:1336–1344. 2019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Vossen DM, Verhagen CVM, van der Heijden
M, Essers PBM, Bartelink H, Verheij M, Wessels LFA, van den Brekel
MWM and Vens C: Genetic factors associated with a poor outcome in
head and neck cancer patients receiving definitive
chemoradiotherapy. Cancers (Basel). 11:4452019. View Article : Google Scholar
|
22
|
Elahi S, Egan SM, Holling GA, Kandefer RL,
Nemeth MJ and Olejniczak SH: The RNA binding protein Ars2 supports
hematopoiesis at multiple levels. Exp Hematol. 64:45–58.e9. 2018.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Gruber JJ, Olejniczak SH, Yong J, La Rocca
G, Dreyfuss G and Thompson CB: Ars2 promotes proper
replication-dependent histone mRNA 3′ end formation. Mol Cell.
45:87–98. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ke XX, Pang Y, Chen K, Zhang D, Wang F,
Zhu S, Mao J, Hu X, Zhang G and Cui H: Knockdown of arsenic
resistance protein 2 inhibits human glioblastoma cell proliferation
through the MAPK/ERK pathway. Oncol Rep. 40:3313–3322.
2018.PubMed/NCBI
|
25
|
He Q, Cai L, Shuai L, Li D, Wang C, Liu Y,
Li X, Li Z and Wang S: Ars2 is overexpressed in human
cholangiocarcinomas and its depletion increases PTEN and PDCD4 by
decreasing microRNA-21. Mol Carcinog. 52:286–296. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Cui L, Gao C, Zhang RD, Jiao Y, Li WJ,
Zhao XX, Liu SG, Yue ZX, Zheng HY, Deng GR, et al: Low expressions
of ARS2 and CASP8AP2 predict relapse and poor prognosis in
pediatric acute lymphoblastic leukemia patients treated on China
CCLG-ALL 2008 protocol. Leuk Res. 39:115–123. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ansari N, Shahrabi S, Khosravi A, Shirzad
R and Rezaeean H: Prognostic significance of CHEK2 mutation in
progression of breast cancer. Lab Med. 50:e36–e41. 2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Luo Q, Guo H, Kuang P, Cui H, Deng H, Liu
H, Lu Y, Wei Q, Chen L, Fang J, et al: Sodium fluoride arrests
renal G2/M phase cell-cycle progression by activating
ATM-Chk2-P53/Cdc25C signaling pathway in mice. Cell Physiol
Biochem. 51:2421–2433. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Apostolou P and Papasotiriou I: Current
perspectives on CHEK2 mutations in breast cancer. Breast Cancer
(Dove Med Press). 9:331–335. 2017.PubMed/NCBI
|
30
|
Wang W, Guo M, Xia X, Zhang C, Zeng Y and
Wu S: XRRA1 targets ATM/CHK1/2-mediated DNA repair in colorectal
cancer. Biomed Res Int. 2017:57189682017.PubMed/NCBI
|
31
|
Yoon AJ, Shen J, Santella RM, Zegarelli
DJ, Chen R and Weinstein IB: Activated checkpoint kinase 2
expression and risk for oral squamous cell carcinoma. Cancer
Epidemiol Biomarkers Prev. 16:2768–2772. 2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Carloni V, Lulli M, Madiai S, Mello T,
Hall A, Luong TV, Pinzani M, Rombouts K and Galli A: CHK2
overexpression and mislocalisation within mitotic structures
enhances chromosomal instability and hepatocellular carcinoma
progression. Gut. 67:348–361. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Advani SJ, Camargo MF, Seguin L, Mielgo A,
Anand S, Hicks AM, Aguilera J, Franovic A, Weis SM and Cheresh DA:
Kinase-independent role for CRAF-driving tumour radioresistance via
CHK2. Nat Commun. 6:81542015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Quidville V, Alsafadi S, Goubar A, Commo
F, Scott V, Pioche-Durieu C, Girault I, Baconnais S, Le Cam E,
Lazar V, et al: Targeting the deregulated spliceosome core
machinery in cancer cells triggers mTOR blockade and autophagy.
Cancer Res. 73:2247–2258. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Valles I, Pajares MJ, Segura V, Guruceaga
E, Gomez-Roman J, Blanco D, Tamura A, Montuenga LM and Pio R:
Identification of novel deregulated RNA metabolism-related genes in
non-small cell lung cancer. PLoS One. 7:e420862012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chen T, Zhang B, Ziegenhals T, Prusty AB,
Fröhler S, Grimm C, Hu Y, Schaefke B, Fang L, Zhang M, et al: A
missense mutation in SNRPE linked to non-syndromal microcephaly
interferes with U snRNP assembly and pre-mRNA splicing. PLoS Genet.
15:e10084602019. View Article : Google Scholar : PubMed/NCBI
|
37
|
Anchi T, Tamura K, Furihata M, Satake H,
Sakoda H, Kawada C, Kamei M, Shimamoto T, Fukuhara H, Fukata S, et
al: SNRPE is involved in cell proliferation and progression of
high-grade prostate cancer through the regulation of androgen
receptor expression. Oncol Lett. 3:264–268. 2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
He J, Xing J, Yang X, Zhang C, Zhang Y,
Wang H, Xu X, Wang H, Cao Y, Xu H, et al: Silencing of proteasome
26S subunit ATPase 2 regulates colorectal cancer cell
proliferation, apoptosis, and migration. Chemotherapy. 64:146–154.
2019. View Article : Google Scholar : PubMed/NCBI
|
39
|
Qin J, Wang W, An F, Huang W and Ding J:
PSMC2 is up-regulated in pancreatic cancer and promotes cancer cell
proliferation and inhibits apoptosis. J Cancer. 10:4939–4946. 2019.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Song M, Wang Y, Zhang Z and Wang S: PSMC2
is up-regulated in osteosarcoma and regulates osteosarcoma cell
proliferation, apoptosis and migration. Oncotarget. 8:933–953.
2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Li GW and Yan X: Lower miR-630 expression
predicts poor prognosis of osteosarcoma and promotes cell
proliferation, migration and invasion by targeting PSMC2. Eur Rev
Med Pharmacol Sci. 23:1915–1925. 2019.PubMed/NCBI
|
42
|
Shibata E and Dutta A: A human cancer cell
line initiates DNA replication normally in the absence of ORC5 and
ORC2 proteins. J Biol Chem. 295:16949–16959. 2020. View Article : Google Scholar
|
43
|
Giri S, Chakraborty A, Sathyan KM,
Prasanth KV and Prasanth SG: Orc5 induces large-scale chromatin
decondensation in a GCN5-dependent manner. J Cell Sci. 129:417–429.
2016. View Article : Google Scholar
|
44
|
Oomizu S, Sahuc F, Asahina K, Inamatsu M,
Matsuzaki T, Sasaki M, Obara M and Yoshizato K: Kdap, a novel gene
associated with the stratification of the epithelium. Gene.
256:19–27. 2000. View Article : Google Scholar : PubMed/NCBI
|
45
|
Thibodeau BJ, Geddes TJ, Fortier LE, Ahmed
S, Pruetz BL, Wobb J, Chen P, Wilson GD and Akervall JA: Gene
expression characterization of HPV positive head and neck cancer to
predict response to chemoradiation. Head Neck Pathol. 9:345–353.
2015. View Article : Google Scholar : PubMed/NCBI
|