1
|
Flemer B, Warren RD, Barrett MP, Cisek K,
Das A, Jeffery IB, Hurley E, O'Riordain M, Shanahan F and O'Toole
PW: The oral microbiota in colorectal cancer is distinctive and
predictive. Gut. 67:1454–1463. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yao P, Li Y, Shen W, Xu X, Zhu W, Yang X,
Cao J and Xing C: ANKHD1 silencing suppresses the proliferation,
migration and invasion of CRC cells by inhibiting YAP1-induced
activation of EMT. Am J Cancer Res. 8:2311–2324. 2018.PubMed/NCBI
|
4
|
Paauwe M, Schoonderwoerd MJA, Helderman
RFCP, Harryvan TJ, Groenewoud A, van Pelt GW, Bor R, Hemmer DM,
Versteeg HH, Snaar-Jagalska BE, et al: Endoglin expression on
cancer-associated fibroblasts regulates invasion and stimulates
colorectal cancer metastasis. Clin Cancer Res. 24:6331–6344. 2018.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Shastri AA, Saleh A, Savage JE, DeAngelis
T, Camphausen K and Simone NL: Dietary alterations modulate the
microRNA 29/30 and IGF-1/AKT signaling axis in breast cancer liver
metastasis. Nutr Metab (Lond). 17:232020. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gao D, Zhou Z and Huang H: miR-30b-3p
inhibits proliferation and invasion of hepatocellular carcinoma
cells via suppressing PI3K/Akt pathway. Front Genet. 10:12742019.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Sun T, Liu Z, Zhang R, Ma S, Lin T, Li Y,
Yang S, Zhang W and Wang Y: Long non-coding RNA LEF1-AS1 promotes
migration, invasion and metastasis of colon cancer cells through
miR-30-5p/SOX9 axis. Onco Targets Ther. 13:2957–2972. 2020.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Ye YY, Mei JW, Xiang SS, Li HF, Ma Q, Song
XL, Wang Z, Zhang YC, Liu YC, Jin YP, et al: MicroRNA-30a-5p
inhibits gallbladder cancer cell proliferation, migration and
metastasis by targeting E2F7. Cell Death Dis. 9:4102018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang L, Zhao S and Yu M: Mechanism of low
expression of miR-30a-5p on epithelial-mesenchymal transition and
metastasis in ovarian cancer. DNA Cell Biol. 38:341–351. 2019.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Wei W, Yang Y, Cai J, Cui K, Li RX, Wang
H, Shang X and Wei D: MiR-30a-5p suppresses tumor metastasis of
human colorectal cancer by targeting ITGB3. Cell Physiol Biochem.
39:1165–1176. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang X, Zhao Y, Lu Q, Fei X, Lu C, Li C
and Chen H: MiR-34a-5p inhibits proliferation, migration, invasion
and epithelial-mesenchymal transition in esophageal squamous cell
carcinoma by targeting LEF1 and inactivation of the Hippo-YAP1/TAZ
signaling pathway. J Cancer. 11:3072–3081. 2020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yu S, Jing L, Yin XR, Wang MC, Chen YM,
Guo Y, Nan KJ and Han LL: MiR-195 suppresses the metastasis and
epithelial-mesenchymal transition of hepatocellular carcinoma by
inhibiting YAP. Oncotarget. 8:99757–99771. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Gao Y, Yi J, Zhang K, Bai F, Feng B, Wang
R, Chu X, Chen L and Song H: Downregulation of MiR-31 stimulates
expression of LATS2 via the hippo pathway and promotes
epithelial-mesenchymal transition in esophageal squamous cell
carcinoma. J Exp Clin Cancer Res. 36:1612017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hashem S, Nisar S, Sageena G, Macha MA,
Yadav SK, Krishnankutty R, Uddin S, Haris M and Bhat AA:
Therapeutic effects of curcumol in several diseases; An overview.
Nutr Cancer. 14:1–15. 2020.
|
15
|
Chun-Bin S, Yi Y, Qin-Yi W, Yang L,
Jing-Ze Y, Hai-Jing X, Si-Qi Z, Jiong H, Jing W, Fei-Yu L, et al:
The main active components of Curcuma zedoaria reduces collagen
deposition in human lung fibroblast via autophagy. Mol Immunol.
124:109–116. 2020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chen X, Zong C, Gao Y, Cai R, Fang L, Lu
J, Liu F and Qi Y: Curcumol exhibits anti-inflammatory properties
by interfering with the JNK-mediated AP-1 pathway in
lipopolysaccharide-activated RAW264.7 cells. Eur J Pharmacol.
723:339–345. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zang S, Tang Q, Dong F, Liu H, Li L, Guo
F, Pan X, Lin H, Zeng W, Cai Z, et al: Curcumol inhibits the
proliferation of gastric adenocarcinoma MGC-803 cells via
downregulation of IDH1. Oncol Rep. 38:3583–3591. 2017.PubMed/NCBI
|
18
|
Zhang J, Su G, Tang Z, Wang L, Fu W, Zhao
S, Ba Y, Bai B, Yue P, Lin Y, et al: Curcumol exerts anticancer
effect in cholangiocarcinoma cells via down-regulating CDKL3. Front
Physiol. 9:2342018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yan D, Deng S, Gan W, Li S and Li Y:
Curcumol attenuates epithelial-mesenchymal transition of
nasopharyngeal carcinoma cells via TGF-β1. Mol Med Rep.
17:7513–7520. 2018.PubMed/NCBI
|
20
|
Wang J, Li XM, Bai Z, Chi BX, Wei Y and
Chen X: Curcumol induces cell cycle arrest in colon cancer cells
via reactive oxygen species and Akt/GSK3β/cyclin D1 pathway. J
Ethnopharmacol. 210:1–9. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu H, Wang J, Tao Y, Li X, Qin J, Bai Z,
Chi B, Yan W and Chen X: Curcumol inhibits colorectal cancer
proliferation by targeting miR-21 and modulated PTEN/PI3K/Akt
pathways. Life Sci. 221:354–361. 2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang J, Huang F, Bai Z, Chi B, Wu J and
Chen X: Curcumol inhibits growth and induces apoptosis of
colorectal cancer LoVo cell line via IGF-1R and p38 MAPK pathway.
Int J Mol Sci. 16:19851–19867. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Pantel K and Brakenhoff RH: Dissecting the
metastatic cascade. Nat Rev Cancer. 4:448–456. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Cheng B, Rong A, Zhou Q and Li W: CLDN8
promotes colorectal cancer cell proliferation, migration, and
invasion by activating MAPK/ERK signaling. Cancer Manag Res.
11:3741–3751. 2019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Li J, Zhao LM, Zhang C, Li M, Gao B, Hu
XH, Cao J and Wang GY: The lncRNA FEZF1-AS1 promotes the
progression of colorectal cancer through regulating OTX1 and
targeting miR-30a-5p. Oncol Res. 28:51–63. 2020. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhao H, Lai X, Zhang W, Zhu H, Zhang S, Wu
W, Wang S, Tang M, Deng Z and Tan J: MiR-30a-5p frequently
downregulated in prostate cancer inhibits cell proliferation via
targeting PCLAF. Artif Cells Nanomed Biotechnol. 47:278–289. 2019.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Peng Q, Shen Y, Zhao P, Cheng M, Zhu Y and
Xu B: Biomarker roles identification of miR-106 family for
predicting the risk and poor survival of colorectal cancer. BMC
Cancer. 20:5062020. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhao JJ, Lin J, Zhu D, Wang X, Brooks D,
Chen M, Chu ZB, Takada K, Ciccarelli B, Admin S, et al: miR-30-5p
functions as a tumor suppressor and novel therapeutic tool by
targeting the oncogenic Wnt/β-catenin/BCL9 pathway. Cancer Res.
74:1801–1813. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sun ZQ, Shi K, Zhou QB, Zeng XY, Liu J,
Yang SX, Wang QS, Li Z, Wang GX, Song JM, et al: MiR-590-3p
promotes proliferation and metastasis of colorectal cancer via
Hippo pathway. Oncotarget. 8:58061–58071. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sun Y, Yang B, Lin M, Yu H, Chen H and
Zhang Z: Identification of serum miR-30a-5p as a diagnostic and
prognostic biomarker in colorectal cancer. Cancer Biomark.
24:299–305. 2019. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ren L, Zhang Z, Feng Y, Luo M and Hao Z:
MicroRNA-876-5p represses the cell proliferation and invasion of
colorectal cancer through suppressing YAP signalling via targeting
RASAL2. Clin Exp Pharmacol Physiol. 47:867–876. 2020. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhao H, Huang A, Li P, Quan Y, Feng B,
Chen X, Mao Z, Zhu Z and Zheng M: E2A suppresses invasion and
migration by targeting YAP in colorectal cancer cells. J Transl
Med. 11:3172013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Cheng D, Jin L, Chen Y, Xi X and Guo Y:
YAP promotes epithelial mesenchymal transition by upregulating Slug
expression in human colorectal cancer cells. Int J Clin Exp Pathol.
13:701–710. 2020.PubMed/NCBI
|
35
|
Wang L, Shi S, Guo Z, Zhang X, Han S, Yang
A, Wen W and Zhu Q: Overexpression of YAP and TAZ is an independent
predictor of prognosis in colorectal cancer and related to the
proliferation and metastasis of colon cancer cells. PLoS One.
8:e655392013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Xu Z, Wang H, Gao L, Zhang H and Wang X:
YAP levels combined with plasma CEA levels are prognostic
biomarkers for early-clinical-stage patients of colorectal cancer.
Biomed Res Int. 2019:21708302019. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ye Y, Zhang R and Feng H: Fibronectin
promotes tumor cells growth and drugs resistance through a
CDC42-YAP-dependent signaling pathway in colorectal cancer. Cell
Biol Int. 44:1840–1849. 2020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Meng Z, Moroishi T and Guan KL: Mechanisms
of Hippo pathway regulation. Genes Dev. 30:1–17. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Chen W, Wang H, Liu Y, Xu W, Ling C, Li Y,
Liu J, Chen M, Zhang Y, Chen B, et al: Linc-RoR promotes
proliferation, migration, and invasion via the Hippo/YAP pathway in
pancreatic cancer cells. J Cell Biochem. 121:632–641. 2020.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Jolly MK, Ware KE, Xu S, Gilja S, Shetler
S, Yang Y, Wang X, Austin RG, Runyambo D, Hish AJ, et al:
E-cadherin represses anchorage-independent growth in sarcomas
through both signaling and mechanical mechanisms. Mol Cancer Res.
17:1391–1402. 2019. View Article : Google Scholar : PubMed/NCBI
|
41
|
Hu Z, Wang P, Lin J, Zheng X, Yang F,
Zhang G, Chen D, Xie J, Gao Z, Peng L and Xie C: MicroRNA-197
promotes metastasis of hepatocellular carcinoma by activating
Wnt/β-catenin signaling. Cell Physiol Biochem. 51:470–486. 2018.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Yang S, Liu Y, Li MY, Ng CSH, Yang SL,
Wang S, Zou C, Dong Y, Du J, Long X, et al: FOXP3 promotes tumor
growth and metastasis by activating Wnt/β-catenin signaling pathway
and EMT in non-small cell lung cancer. Mol Cancer. 16:1242017.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Wang J, Cai H, Liu Q, Xia Y, Xing L, Zuo
Q, Zhang Y, Chen C, Xu K, Yin P and Chen T: Cinobufacini inhibits
colon cancer invasion and metastasis via suppressing Wnt/β-catenin
signaling pathway and EMT. Am J Chin Med. 48:703–718. 2020.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Hou Q, Han S, Yang L, Chen S, Chen J, Ma
N, Wang C, Tang J, Chen X, Chen F, et al: The interplay of
MicroRNA-34a, LGR4, EMT-associated factors, and MMP2 in regulating
uveal melanoma cells. Invest Ophthalmol Vis Sci. 60:4503–4510.
2019. View Article : Google Scholar : PubMed/NCBI
|