1
|
Antoni S, Ferlay J, Soerjomataram I, Znaor
A, Jemal A and Bray F: Bladder cancer incidence and mortality: A
global overview and recent trends. Eur Urol. 71:96–108. 2017.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Breyer J, Wirtz RM, Otto W, Erben P,
Kriegmair MC, Stoehr R, Eckstein M, Eidt S, Denzinger S, Burger M,
et al BRIDGE Consortium, : In stage pT1 non-muscle-invasive bladder
cancer (NMIBC), high KRT20 and low KRT5 mRNA expression identify
the luminal subtype and predict recurrence and survival. Virchows
Arch. 470:267–274. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Babjuk M, Böhle A, Burger M, Capoun O,
Cohen D, Compérat EM, Hernández V, Kaasinen E, Palou J, Rouprêt M,
et al: EAU guidelines on non-muscle-invasive urothelial carcinoma
of the bladder: Update 2016. Eur Urol. 71:447–461. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhou Z, Zhao S, Lu Y, Wu J, Li Y, Gao Z,
Yang D and Cui Y: Meta-analysis of efficacy and safety of
continuous saline bladder irrigation compared with intravesical
chemotherapy after transurethral resection of bladder tumors. World
J Urol. 37:1075–1084. 2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kinnaird A, Dromparis P and Evans H:
Recurrence and upstaging rates of T1 high-grade urothelial
carcinoma of the bladder on repeat resection in a Canadian,
resource-limited, healthcare system. Can Urol Assoc J. 12:267–269.
2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gordon PC, Thomas F, Noon AP, Rosario DJ
and Catto JW: Long-term outcomes from re-resection for high-risk
non-muscle-invasive bladder cancer: A potential to rationalize use.
Eur Urol Focus. 5:650–657. 2019. View Article : Google Scholar : PubMed/NCBI
|
7
|
van den Bosch S and Alfred Witjes J:
Long-term cancer-specific survival in patients with high-risk,
non-muscle-invasive bladder cancer and tumour progression: A
systematic review. Eur Urol. 60:493–500. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wu Y, Gao Q, Zhu S, Wu Q, Zhu R, Zhong H,
Xing C, Qu H, Wang D, Li B, et al: Low-intensity pulsed ultrasound
regulates proliferation and differentiation of neural stem cells
through notch signaling pathway. Biochem Biophys Res Commun.
526:793–798. 2020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Qiu Z, Lin S, Hu X, Zeng J, Xiao T, Ke Z
and Lv H: Involvement of miR-146a-5p/neurogenic locus notch homolog
protein 1 in the proliferation and differentiation of
STRO-1+ human dental pulp stem cells. Eur J Oral Sci.
127:294–303. 2019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ai X, Jia Z, Liu S, Wang J and Zhang X:
Notch-1 regulates proliferation and differentiation of human
bladder cancer cell lines by inhibiting expression of Krüppel-like
factor 4. Oncol Rep. 32:1459–1464. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Maraver A, Fernandez-Marcos PJ, Cash TP,
Mendez-Pertuz M, Dueñas M, Maietta P, Martinelli P, Muñoz-Martin M,
Martínez-Fernández M, Cañamero M, et al: NOTCH pathway inactivation
promotes bladder cancer progression. J Clin Invest. 125:824–830.
2015. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Goriki A, Seiler R, Wyatt AW,
Contreras-Sanz A, Bhat A, Matsubara A, Hayashi T and Black PC:
Unravelling disparate roles of NOTCH in bladder cancer. Nat Rev
Urol. 15:345–357. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Li Y, Ma J, Qian X, Wu Q, Xia J, Miele L,
Sarkar FH and Wang Z: Regulation of EMT by Notch signaling pathway
in tumor progression. Curr Cancer Drug Targets. 13:957–962. 2013.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Espinoza I and Miele L: Deadly crosstalk:
Notch signaling at the intersection of EMT and cancer stem cells.
Cancer Lett. 341:41–45. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
D'Angelo RC, Ouzounova M, Davis A, Choi D,
Tchuenkam SM, Kim G, Luther T, Quraishi AA, Senbabaoglu Y, Conley
SJ, et al: Notch reporter activity in breast cancer cell lines
identifies a subset of cells with stem cell activity. Mol Cancer
Ther. 14:779–787. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Henrique D and Schweisguth F: Mechanisms
of Notch signaling: A simple logic deployed in time and space.
Development. Feb 1–2019.(Epub ahead of print). doi:
10.1242/dev.172148. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kovall RA, Gebelein B, Sprinzak D and
Kopan R: The Canonical Notch Signaling pathway: Structural and
biochemical insights into shape, sugar, and force. Dev Cell.
41:228–241. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wei G, Chang Y, Zheng J, He S, Chen N,
Wang X and Sun X: Notch1 silencing inhibits proliferation and
invasion in SGC 7901 gastric cancer cells. Mol Med Rep.
9:1153–1158. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hristova NR, Tagscherer KE, Fassl A,
Kopitz J and Roth W: Notch1-dependent regulation of p27 determines
cell fate in colorectal cancer. Int J Oncol. 43:1967–1975. 2013.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhang Q, Yuan Y, Cui J, Xiao T and Jiang
D: Paeoniflorin inhibits proliferation and invasion of breast
cancer cells through suppressing Notch-1 signaling pathway. Biomed
Pharmacother. 78:197–203. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lai XX, Li G, Lin B and Yang H:
Interference of Notch 1 inhibits the proliferation and invasion of
breast cancer cells: Involvement of the β catenin signaling
pathway. Mol Med Rep. 17:2472–2478. 2018.PubMed/NCBI
|
23
|
Lloyd-Lewis B, Mourikis P and Fre S: Notch
signalling: Sensor and instructor of the microenvironment to
coordinate cell fate and organ morphogenesis. Curr Opin Cell Biol.
61:16–23. 2019. View Article : Google Scholar : PubMed/NCBI
|
24
|
Saitoh M: Involvement of partial EMT in
cancer progression. J Biochem. 164:257–264. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Stone RC, Pastar I, Ojeh N, Chen V, Liu S,
Garzon KI and Tomic-Canic M: Epithelial-mesenchymal transition in
tissue repair and fibrosis. Cell Tissue Res. 365:495–506. 2016.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Rodriguez-Aznar E, Wiesmüller L, Sainz B
Jr and Hermann PC: EMT and stemness-key players in pancreatic
cancer stem cells. Cancers (Basel). 11:11362019. View Article : Google Scholar
|
27
|
Pastushenko I and Blanpain C: EMT
Transition states during tumor progression and metastasis. Trends
Cell Biol. 29:212–226. 2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ko JH, Nam D, Um JY, Jung SH, Sethi G and
Ahn KS: Bergamottin suppresses metastasis of lung cancer cells
through abrogation of diverse oncogenic signaling cascades and
epithelial-to-mesenchymal transition. Molecules. 23:16012018.
View Article : Google Scholar
|
29
|
van Denderen BJ and Thompson EW: Cancer:
The to and fro of tumour spread. Nature. 493:487–488. 2013.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Matsuno Y, Coelho AL, Jarai G, Westwick J
and Hogaboam CM: Notch signaling mediates TGF-β1-induced
epithelial-mesenchymal transition through the induction of Snai1.
Int J Biochem Cell Biol. 44:776–789. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Natsuizaka M, Whelan KA, Kagawa S, Tanaka
K, Giroux V, Chandramouleeswaran PM, Long A, Sahu V, Darling DS,
Que J, et al: Interplay between Notch1 and Notch3 promotes EMT and
tumor initiation in squamous cell carcinoma. Nat Commun.
8:17582017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kang J, Kim E, Kim W, Seong KM, Youn H,
Kim JW, Kim J and Youn B: Rhamnetin and cirsiliol induce
radiosensitization and inhibition of epithelial-mesenchymal
transition (EMT) by miR-34a-mediated suppression of Notch-1
expression in non-small cell lung cancer cell lines. J Biol Chem.
288:27343–27357. 2013. View Article : Google Scholar : PubMed/NCBI
|