1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 2021.(Epub ahead of
print). View Article : Google Scholar : PubMed/NCBI
|
2
|
Gadag S, Sinha S, Nayak Y, Garg S and
Nayak UY: Combination therapy and nanoparticulate systems: Smart
approaches for the effective treatment of breast cancer.
Pharmaceutics. 12:5242020. View Article : Google Scholar
|
3
|
Zanconato F, Cordenonsi M and Piccolo S:
YAP/TAZ at the roots of cancer. Cancer Cell. 29:783–803. 2016.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Yin F, Yu J, Zheng Y, Chen Q, Zhang N and
Pan D: Spatial organization of Hippo signaling at the plasma
membrane mediated by the tumor suppressor Merlin/NF2. Cell.
154:1342–1355. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Maugeri-Sacca M and De Maria R: The Hippo
pathway in normal development and cancer. PharmacolTher. 186:60–72.
2018.
|
6
|
Moroishi T, Hansen CG and Guan KL: The
emerging roles of YAP and TAZ in cancer. Nat Rev Cancer. 15:73–79.
2015. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Maugeri-Sacca M, Barba M, Pizzuti L, Vici
P, Di Lauro L, Dattilo R, Vitale I, Bartucci M, Mottolese M and De
Maria R: The Hippo transducers TAZ and YAP in breast cancer:
Oncogenic activities and clinical implications. Expert Rev Mol Med.
17:e142015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lamar JM, Stern P, Liu H, Schindler JW,
Jiang ZG and Hynes RO: The Hippo pathway target, YAP, promotes
metastasis through its TEAD-interaction domain. Proc Natl Acad Sci
USA. 109:E2441–E2450. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang Y, Li J, Gao Y, Luo Y, Luo H, Wang L,
Yi Y, Yuan Z and Jim Xiao ZX: Hippo kinases regulate cell junctions
to inhibit tumor metastasis in response to oxidative stress. Redox
Biol. 26:1012332019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lin XY, Cai FF, Wang MH, Pan X, Wang F,
Cai L, Cui RR, Chen S and Biskup E: Mammalian sterile 20-like
kinase 1 expression and its prognostic significance in patients
with breast cancer. Oncol Lett. 14:5457–5463. 2017.PubMed/NCBI
|
11
|
Heidary Arash E, Shiban A, Song S and
Attisano L: MARK4 inhibits Hippo signaling to promote proliferation
and migration of breast cancer cells. EMBO Rep. 18:420–436. 2017.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Ercolani C, Di Benedetto A, Terrenato I,
Pizzuti L, Di Lauro L, Sergi D, Sperati F, Buglioni S, Ramieri MT,
Mentuccia L, et al: Expression of phosphorylated Hippo pathway
kinases (MST1/2 and LATS1/2) in HER2-positive and triple-negative
breast cancer patients treated with neoadjuvant therapy. Cancer
Biol Ther. 18:339–346. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Furth N and Aylon Y: The LATS1 and LATS2
tumor suppressors: Beyond the Hippo pathway. Cell Death Differ.
24:1488–1501. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lehn S, Tobin NP, Sims AH, Stal O,
Jirstrom K, Axelson H and Landberg G: Decreased expression of
Yes-associated protein is associated with outcome in the luminal a
breast cancer subgroup and with an impaired tamoxifen response. BMC
Cancer. 14:1192014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Maugeri-Sacca M and De Maria R: Hippo
pathway and breast cancer stem cells. Crit Rev Oncol Hematol.
99:115–122. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Cordenonsi M, Zanconato F, Azzolin L,
Forcato M, Rosato A, Frasson C, Inui M, Montagner M, Parenti AR,
Poletti A, et al: The Hippo transducer TAZ confers cancer stem
cell-related traits on breast cancer cells. Cell. 147:759–772.
2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bartucci M, Dattilo R, Moriconi C,
Pagliuca A, Mottolese M, Federici G, Benedetto AD, Todaro M, Stassi
G, Sperati F, et al: TAZ is required for metastatic activity and
chemoresistance of breast cancer stem cells. Oncogene. 34:681–690.
2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Diaz-Martin J, Lopez-Garcia MA,
Romero-Perez L, Atienza-Amores MR, Pecero ML, Castilla MA, Biscuola
M, Santon A and Palacios J: Nuclear TAZ expression associates with
the triple-negative phenotype in breast cancer. EndocrRelat Cancer.
22:443–454. 2015. View Article : Google Scholar
|
19
|
Huang YT, Lan Q, Lorusso G, Duffey N and
Ruegg C: The matricellular protein CYR61 promotes breast cancer
lung metastasis by facilitating tumor cell extravasation and
suppressing anoikis. Oncotarget. 8:9200–9215. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Di Benedetto A, Mottolese M, Sperati F,
Ercolani C, Di Lauro L, Pizzuti L, Vici P, Terrenato I, Sperduti I,
Shaaban AM, et al: The Hippo transducers TAZ/YAP and their target
CTGF in male breast cancer. Oncotarget. 7:43188–43198. 2016.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Elster D, Jaenicke LA, Eilers M and von
Eyss B: TEAD activity is restrained by MYC and stratifies human
breast cancer subtypes. Cell Cycle. 15:2551–2556. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Xiang G, Liu F, Liu J, Meng Q, Li N and
Niu Y: Prognostic role of Amphiregulin and the correlation with
androgen receptor in invasive breast cancer. Pathol Res Pract.
215:1524142019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Niu J, Ma J, Guan X, Zhao X, Li P and
Zhang M: Correlation between doppler ultrasound blood flow
parameters and angiogenesis and proliferation activity in breast
cancer. Med Sci Monit. 25:7035–7041. 2019. View Article : Google Scholar : PubMed/NCBI
|
24
|
He Z, Zhao TT, Jin F, Li JG, Xu YY, Dong
HT, Liu Q, Xing P, Zhu GL, Xu H and Miao ZF: Downregulation of
RASSF6 promotes breast cancer growth and chemoresistance through
regulation of Hippo signaling. BiochemBiophys Res Commun.
503:2340–2347. 2018. View Article : Google Scholar
|
25
|
Liu J, Li J, Li P, Wang Y, Liang Z, Jiang
Y, Li J, Feng C, Wang R, Chen H, et al: Loss of DLG5 promotes
breast cancer malignancy by inhibiting the Hippo signaling pathway.
Sci Rep. 7:421252017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Song GQ and Zhao Y: MAC30 knockdown
involved in the activation of the Hippo signaling pathway in breast
cancer cells. Biol Chem. 399:1305–1311. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Han H, Qi R, Zhou JJ, Ta AP, Yang B,
Nakaoka HJ, Seo G, Guan KL, Luo R and Wang W: Regulation of the
Hippo pathway by phosphatidic Acid-Mediated Lipid-Protein
Interaction. Mol Cell. 72:328–340.e8. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Elaimy AL, Guru S, Chang C, Ou J, Amante
JJ, Zhu LJ, Goel HL and Mercurio AM: VEGF-neuropilin-2 signaling
promotes stem-like traits in breast cancer cells by TAZ-mediated
repression of the Rac GAP β2-chimaerin. Sci Signal.
11:eaao68972018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kim YN, Choe SR, Cho KH, Cho DY, Kang J,
Park CG and Lee HY: Resveratrol suppresses breast cancer cell
invasion by inactivating a RhoA/YAP signaling axis. Exp Mol Med.
49:e2962017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Verma S, Yeddula N, Soda Y, Zhu Q, Pao G,
Moresco J, Diedrich JK, Hong A, Plouffe S, Moroishi T, et al:
BRCA1/BARD1-dependent ubiquitination of NF2 regulates Hippo-YAP1
signaling. Proc Natl Acad Sci USA. 116:7363–7370. 2019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Li W, Cooper J, Zhou L, Yang C,
Erdjument-Bromage H, Zagzag D, Snuderl M, Ladanyi M, Hanemann CO,
Zhou P, et al: Merlin/NF2 loss-driven tumorigenesis linked to
CRL4(DCAF1)-mediated inhibition of the hippo pathway kinases Lats1
and 2 in the nucleus. Cancer Cell. 26:48–60. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ho KC, Zhou Z, She YM, Chun A, Cyr TD and
Yang X: Itch E3 ubiquitin ligase regulates large tumor suppressor 1
stability [corrected]. Proc Natl Acad Sci USA. 108:4870–4875. 2011.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Ma B, Chen Y, Chen L, Cheng H, Mu C, Li J,
Gao R, Zhou C, Cao L, Liu J, et al: Hypoxia regulates Hippo
signalling through the SIAH2 ubiquitin E3 ligase. Nat Cell Biol.
17:95–103. 2015. View
Article : Google Scholar : PubMed/NCBI
|
34
|
Toloczko A, Guo F, Yuen HF, Wen Q, Wood
SA, Ong YS, Chan PY, Shaik AA, Gunaratne J, Dunne MJ, et al:
Deubiquitinating enzyme USP9X suppresses tumor growth via LATS
kinase and core components of the Hippo pathway. Cancer Res.
77:4921–4933. 2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Chen D, Sun Y, Wei Y, Zhang P, Rezaeian
AH, Teruya-Feldstein J, Gupta S, Liang H, Lin HK, Hung MC and Ma L:
LIFR is a breast cancer metastasis suppressor upstream of the
Hippo-YAP pathway and a prognostic marker. Nat Med. 18:1511–1517.
2012. View
Article : Google Scholar : PubMed/NCBI
|
36
|
Li Z, Razavi P, Li Q, Toy W, Liu B, Ping
C, Hsieh W, Sanchez-Vega F, Brown DN, Da Cruz Paula AF, et al: Loss
of the FAT1 tumor suppressor promotes resistance to CDK4/6
inhibitors via the hippo pathway. Cancer Cell. 34:893–905.e8. 2018.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Dang DK, Makena MR, Llongueras JP, Prasad
H, Ko M, Bandral M and Rao R: A Ca2+-ATPase regulates
E-cadherin biogenesis and epithelial-mesenchymal transition in
breast cancer cells. Mol Cancer Res. 17:1735–1747. 2019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yu S, Zhang M, Huang L, Ma Z, Gong X, Liu
W, Zhang J, Chen L, Yu Z, Zhao W, et al: ERK1 indicates good
prognosis and inhibits breast cancer progression by suppressing
YAP1 signaling. Aging (Albany NY). 11:12295–12314. 2019. View Article : Google Scholar : PubMed/NCBI
|
39
|
Dethlefsen C, Hansen LS, Lillelund C,
Andersen C, Gehl J, Christensen JF, Pedersen BK and Hojman P:
Exercise-induced catecholamines activate the Hippo tumor suppressor
pathway to reduce risks of breast cancer development. Cancer Res.
77:4894–4904. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wang Z, Kong Q, Su P, Duan M, Xue M, Li X,
Tang J, Gao Z, Wang B, Li Z, et al: Regulation of Hippo signaling
and triple negative breast cancer progression by an ubiquitin
ligase RNF187. Oncogenesis. 9:362020. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zhang Z, Du J, Wang S, Shao L, Jin K, Li
F, Wei B, Ding W, Fu P, van Dam H, et al: OTUB2 promotes cancer
metastasis via Hippo-independent activation of YAP and TAZ. Mol
Cell. 73:7–21.e7. 2019. View Article : Google Scholar : PubMed/NCBI
|
42
|
Hou L, Xie S, Li G, Xiong B, Gao Y, Zhao
X, Hu J, Deng S and Jiang J: IL-6 triggers the migration and
invasion of oestrogen receptor-negative breast cancer cells via
regulation of Hippo pathways. Basic Clin PharmacolToxicol.
123:549–557. 2018. View Article : Google Scholar
|
43
|
Lv M, Lv M, Chen L, Qin T, Zhang X, Liu P
and Yang J: Angiomotin promotes breast cancer cell proliferation
and invasion. Oncol Rep. 33:1938–1946. 2015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Zanconato F, Forcato M, Battilana G,
Azzolin L, Quaranta E, Bodega B, Rosato A, Bicciato S, Cordenonsi M
and Piccolo S: Genome-wide association between YAP/TAZ/TEAD and
AP-1 at enhancers drives oncogenic growth. Nat Cell Biol.
17:1218–1227. 2015. View Article : Google Scholar : PubMed/NCBI
|
45
|
Janse van Rensburg HJ, Azad T, Ling M, Hao
Y, Snetsinger B, Khanal P, Minassian LM, Graham CH, Rauh MJ and
Yang X: The Hippo pathway component TAZ promotes immune evasion in
human cancer through PD-L1. Cancer Res. 78:1457–1470. 2018.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Rashidian J, Le Scolan E, Ji X, Zhu Q,
Mulvihill MM, Nomura D and Luo K: Ski regulates Hippo and TAZ
signaling to suppress breast cancer progression. Sci Signal.
8:ra142015. View Article : Google Scholar : PubMed/NCBI
|
47
|
Holden JK and Cunningham CN: Targeting the
Hippo pathway and cancer through the TEAD family of transcription
factors. Cancers (Basel). 10:812018. View Article : Google Scholar
|
48
|
Qi Y, Yu J, Han W, Fan X, Qian H, Wei H,
Tsai YH, Zhao J, Zhang W, Liu Q, et al: A splicing isoform of TEAD4
attenuates the Hippo-YAP signalling to inhibit tumour
proliferation. Nat Commun. 7:ncommss118402016. View Article : Google Scholar
|
49
|
Gibault F, Sturbaut M, Bailly F, Melnyk P
and Cotelle P: Targeting transcriptional enhanced associate domains
(TEADs). J Med Chem. 61:5057–5072. 2018. View Article : Google Scholar : PubMed/NCBI
|
50
|
Zhou Y, Huang T, Cheng AS, Yu J, Kang W
and To KF: The TEAD family and its oncogenic role in promoting
tumorigenesis. Int J Mol Sci. 17:1382016. View Article : Google Scholar
|
51
|
Zhu C, Li L, Zhang Z, Bi M, Wang H, Su W,
Hernandez K, Liu P, Chen J, Chen M, et al: A non-canonical role of
YAP/TEAD is required for activation of estrogen-regulated enhancers
in breast cancer. Mol Cell. 75:791–806.e8. 2019. View Article : Google Scholar : PubMed/NCBI
|
52
|
Liu Y, Wang G, Yang Y, Mei Z, Liang Z, Cui
A, Wu T, Liu CY and Cui L: Increased TEAD4 expression and nuclear
localization in colorectal cancer promote epithelial-mesenchymal
transition and metastasis in a YAP-independent manner. Oncogene.
35:2789–2800. 2016. View Article : Google Scholar : PubMed/NCBI
|
53
|
Yu MH and Zhang W: TEAD1 enhances
proliferation via activating SP1 in colorectal cancer. Biomed
Pharmacother. 83:496–501. 2016. View Article : Google Scholar : PubMed/NCBI
|
54
|
He L, Yuan L, Sun Y, Wang P, Zhang H, Feng
X, Wang Z, Zhang W, Yang C, Zeng YA, et al: Glucocorticoid receptor
signaling activates TEAD4 to promote breast cancer progression.
Cancer Res. 79:4399–4411. 2019. View Article : Google Scholar : PubMed/NCBI
|