1
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics, 2013. CA Cancer J Clin. 63:11–30. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Li X, Zhou Y, Luo Z, Gu Y, Chen Y, Yang C,
Wang J, Xiao S, Sun Q, Qian M and Zhao G: The impact of screening
on the survival of colorectal cancer in Shanghai, China: A
population based study. BMC Public Health. 19:10162019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Meads MB, Gatenby RA and Dalton WS:
Environment-mediated drug resistance: A major contributor to
minimal residual disease. Nat Rev Cancer. 9:665–674. 2009.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhao H, Zhang N, Ho V, Ding M, He W, Niu
J, Yang M, Du XL, Zorzi D, Chavez-MacGregor M and Giordano SH:
Adherence to treatment guidelines and survival for older patients
with stage II or III colon cancer in Texas from 2001 through 2011.
Cancer. 124:679–687. 2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lieberman DA, Rex DK, Winawer SJ,
Giardiello FM, Johnson DA and Levin TR: Guidelines for colonoscopy
surveillance after screening and polypectomy: A consensus update by
the US multi-society task force on colorectal cancer.
Gastroenterology. 143:844–857. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Harada T, Yamamoto E, Yamano HO, Aoki H,
Matsushita HO, Yoshikawa K, Takagi R, Harada E, Tanaka Y, Yoshida
Y, et al: Surface microstructures are associated with mutational
intratumoral heterogeneity in colorectal tumors. J Gastroenterol.
53:1241–1252. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rawlings JS, Rosler KM and Harrison DA:
The JAK/STAT signaling pathway. J Cell Sci. 117:1281–1283. 2004.
View Article : Google Scholar : PubMed/NCBI
|
9
|
O'Shea JJ, Schwartz DM, Villarino AV,
Gadina M, McInnes IB and Laurence A: The JAK-STAT pathway: Impact
on human disease and therapeutic intervention. Annu Rev Med.
66:311–328. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sansone P and Bromberg J: Targeting the
interleukin-6/Jak/stat pathway in human malignancies. J Clin Oncol.
30:1005–1014. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Spano JP, Milano G, Rixe C and Fagard R:
JAK/STAT signalling pathway in colorectal cancer: A new biological
target with therapeutic implications. Eur J Cancer. 42:2668–2670.
2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wang SW and Sun YM: The IL-6/JAK/STAT3
pathway: Potential therapeutic strategies in treating colorectal
cancer (Review). Int J Oncol. 44:1032–1040. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yamaguchi R, Lartigue L and Perkins G:
Targeting Mcl-1 and other Bcl-2 family member proteins in cancer
therapy. Pharmacol Ther. 195:13–20. 2019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Li X, Zeng X, Sun J, Li H, Wu P, Fung KP
and Liu F: Imperatorin induces Mcl-1 degradation to cooperatively
trigger Bax translocation and Bak activation to suppress
drug-resistant human hepatoma. Cancer Lett. 348:146–155. 2014.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Craig RW: MCL1 provides a window on the
role of the BCL2 family in cell proliferation, differentiation and
tumorigenesis. Leukemia. 16:444–454. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Gomez-Bougie P, Halliez M, Moreau P,
Pellat-Deceunynck C and Amiot M: Repression of Mcl-1 and disruption
of the Mcl-1/Bak interaction in myeloma cells couple ER stress to
mitochondrial apoptosis. Cancer Lett. 383:204–211. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Verstovsek S, Kantarjian H, Mesa RA,
Pardanani AD, Cortes-Franco J, Thomas DA, Estrov Z, Fridman JS,
Bradley EC, Erickson-Viitanen S, et al: Safety and efficacy of
INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J
Med. 363:1117–1127. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Shilling AD, Nedza FM, Emm T, Diamond S,
McKeever E, Punwani N, Williams W, Arvanitis A, Galya LG, Li M, et
al: Metabolism, excretion, and pharmacokinetics of [14C]INCB018424,
a selective Janus tyrosine kinase 1/2 inhibitor, in humans. Drug
Metab Dispos. 38:2023–2031. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Stover DG, Gil Del Alcazar CR, Brock J,
Guo H, Overmoyer B, Balko J, Xu Q, Bardia A, Tolaney SM, Gelman R,
et al: Phase II study of ruxolitinib, a selective JAK1/2 inhibitor,
in patients with metastatic triple-negative breast cancer. NPJ
Breast Cancer. 4:102018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Galvez Acosta S and Javalera Rincon M:
Ruxolitinib as first-line therapy in secondary hemophagocytic
lymphohistiocytosis and HIV infection. Int J Hematol. 112:418–421.
2020. View Article : Google Scholar : PubMed/NCBI
|
21
|
Harrison C, Kiladjian JJ, Al-Ali HK,
Gisslinger H, Waltzman R, Stalbovskaya V, McQuitty M, Hunter DS,
Levy R, Knoops L, et al: JAK inhibition with ruxolitinib versus
best available therapy for myelofibrosis. N Engl J Med.
366:787–798. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Schonberg K, Rudolph J, Vonnahme M,
Parampalli Yajnanarayana S, Cornez I, Hejazi M, Manser AR, Uhrberg
M, Verbeek W, Koschmieder S, et al: JAK inhibition impairs NK cell
function in myeloproliferative neoplasms. Cancer Res. 75:2187–2199.
2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Klatte M and Bauer P: Accurate real-time
reverse transcription quantitative PCR. Methods Mol Biol.
479:61–77. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li X, Wu J, Zhang X and Chen W:
Glutathione reductase-mediated thiol oxidative stress suppresses
metastasis of murine melanoma cells. Free Radic Biol Med.
129:256–267. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Du H, Chen L, Luo F, Chen X, Li Y and
Cheng Q: Beclin-1 expression is associated with prognosis in a
Bcl-2-dependent manner in non-small cell lung cancer. Oncol Lett.
20:92020.PubMed/NCBI
|
26
|
Yuan B, Hao J, Zhang Q, Wang Y and Zhu Y:
Role of Bcl-2 on drug resistance in breast cancer
polyploidy-induced spindle poisons. Oncol Lett. 19:1701–1710.
2020.PubMed/NCBI
|
27
|
Zhou Y, Zhou Y, Yang M, Wang K, Liu Y,
Zhang M, Yang Y, Jin C, Wang R and Hu R: Digoxin sensitizes
gemcitabine-resistant pancreatic cancer cells to gemcitabine via
inhibiting Nrf2 signaling pathway. Redox Biol. 22:1011312019.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Timofeeva OA, Plisov S, Evseev AA, Peng S,
Jose-Kampfner M, Lovvorn HN, Dome JS and Perantoni AO:
Serine-phosphorylated STAT1 is a prosurvival factor in Wilms' tumor
pathogenesis. Oncogene. 25:7555–7564. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Reed JC: Proapoptotic multidomain
Bcl-2/Bax-family proteins: Mechanisms, physiological roles, and
therapeutic opportunities. Cell Death Differ. 13:1378–1386. 2006.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Cuconati A, Mukherjee C, Perez D and White
E: DNA damage response and MCL-1 destruction initiate apoptosis in
adenovirus-infected cells. Genes Dev. 17:2922–2932. 2003.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Chen S, Dai Y, Harada H, Dent P and Grant
S: Mcl-1 down-regulation potentiates ABT-737 lethality by
cooperatively inducing Bak activation and Bax translocation. Cancer
Res. 67:782–791. 2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Rane SG and Reddy EP: Janus kinases:
Components of multiple signaling pathways. Oncogene. 19:5662–5679.
2000. View Article : Google Scholar : PubMed/NCBI
|
33
|
Turkson J and Jove R: STAT proteins: Novel
molecular targets for cancer drug discovery. Oncogene.
19:6613–6626. 2000. View Article : Google Scholar : PubMed/NCBI
|
34
|
Meissl K, Macho-Maschler S, Muller M and
Strobl B: The good and the bad faces of STAT1 in solid tumours.
Cytokine. 89:12–20. 2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Boisson-Dupuis S, Kong XF, Okada S,
Cypowyj S, Puel A, Abel L and Casanova JL: Inborn errors of human
STAT1: Allelic heterogeneity governs the diversity of immunological
and infectious phenotypes. Curr Opin Immunol. 24:364–378. 2012.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Decker T and Kovarik P: Serine
phosphorylation of STATs. Oncogene. 19:2628–2637. 2000. View Article : Google Scholar : PubMed/NCBI
|
37
|
Chen J, Wang H, Wang J, Huang S and Zhang
W: STAT1 inhibits human hepatocellular carcinoma cell growth
through induction of p53 and Fbxw7. Cancer Cell Int. 15:1112015.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang Y, Molavi O, Su M and Lai R: The
clinical and biological significance of STAT1 in esophageal
squamous cell carcinoma. BMC Cancer. 14:7912014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhang X, Li X, Tan F, Yu N and Pei H:
STAT1 inhibits MiR-181a expression to suppress colorectal cancer
cell proliferation through PTEN/Akt. J Cell Biochem. 118:3435–3443.
2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Sun Y, Yang S, Sun N and Chen J:
Differential expression of STAT1 and p21 proteins predicts
pancreatic cancer progression and prognosis. Pancreas. 43:619–623.
2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Osborn JL and Greer SF: Metastatic
melanoma cells evade immune detection by silencing STAT1. Int J Mol
Sci. 16:4343–4361. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Zhang N, Li F, Gao J, Zhang S and Wang Q:
Osteopontin accelerates the development and metastasis of bladder
cancer via activating JAK1/STAT1 pathway. Genes Genomics.
42:467–475. 2020. View Article : Google Scholar : PubMed/NCBI
|
43
|
Wu J, Gao F, Xu T, Li J, Hu Z, Wang C,
Long Y, He X, Deng X, Ren D, et al: CLDN1 induces autophagy to
promote proliferation and metastasis of esophageal squamous
carcinoma through AMPK/STAT1/ULK1 signaling. J Cell Physiol.
235:2245–2259. 2020. View Article : Google Scholar : PubMed/NCBI
|
44
|
Malilas W, Koh SS, Kim S, Srisuttee R, Cho
IR, Moon J, Yoo HS, Oh S, Johnston RN and Chung YH: Cancer
upregulated gene 2, a novel oncogene, enhances migration and drug
resistance of colon cancer cells via STAT1 activation. Int J Oncol.
43:1111–1116. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Inoue-Yamauchi A, Jeng PS, Kim K, Chen HC,
Han S, Ganesan YT, Ishizawa K, Jebiwott S, Dong Y, Pietanza MC, et
al: Targeting the differential addiction to anti-apoptotic BCL-2
family for cancer therapy. Nat Commun. 8:160782017. View Article : Google Scholar : PubMed/NCBI
|
46
|
Quinn BA, Dash R, Azab B, Sarkar S, Das
SK, Kumar S, Oyesanya RA, Dasgupta S, Dent P, Grant S, et al:
Targeting Mcl-1 for the therapy of cancer. Expert Opin Investig
Drugs. 20:1397–1411. 2011. View Article : Google Scholar : PubMed/NCBI
|
47
|
Radhakrishnan H, Ilm K, Walther W,
Shirasawa S, Sasazuki T, Daniel PT, Gillissen B and Stein U: MACC1
regulates Fas mediated apoptosis through STAT1/3 - Mcl-1 signaling
in solid cancers. Cancer Lett. 403:231–245. 2017. View Article : Google Scholar : PubMed/NCBI
|
48
|
Jin X, Yu Y, Zou Q, Wang M, Cui Y, Xie J
and Wang Z: MicroRNA-105 promotes epithelial-mesenchymal transition
of nonsmall lung cancer cells through upregulating Mcl-1. J Cell
Biochem. 120:5880–5888. 2019. View Article : Google Scholar : PubMed/NCBI
|
49
|
Zhao C, Wang Y, Jin H and Yu T: Knockdown
of microRNA-203 alleviates LPS-induced injury by targeting MCL-1 in
C28/I2 chondrocytes. Exp Cell Res. 359:171–178. 2017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Gong J, Zhang JP, Li B, Zeng C, You K,
Chen MX, Yuan Y and Zhuang SM: MicroRNA-125b promotes apoptosis by
regulating the expression of Mcl-1, Bcl-w and IL-6R. Oncogene.
32:3071–3079. 2013. View Article : Google Scholar : PubMed/NCBI
|
51
|
Placzek WJ, Wei J, Kitada S, Zhai D, Reed
JC and Pellecchia M: A survey of the anti-apoptotic Bcl-2 subfamily
expression in cancer types provides a platform to predict the
efficacy of Bcl-2 antagonists in cancer therapy. Cell Death Dis.
1:e402010. View Article : Google Scholar : PubMed/NCBI
|
52
|
Zhang X, Zhang J, Wei H and Tian Z:
STAT3-decoy oligodeoxynucleotide inhibits the growth of human lung
cancer via down-regulating its target genes. Oncol Rep.
17:1377–1382. 2007.PubMed/NCBI
|
53
|
Salazar-Montes A, Ruiz-Corro L,
Sandoval-Rodriguez A, Lopez-Reyes A and Armendariz-Borunda J:
Increased DNA binding activity of NF-kappaB, STAT-3, SMAD3 and AP-1
in acutely damaged liver. World J Gastroenterol. 12:5995–6001.
2006. View Article : Google Scholar : PubMed/NCBI
|
54
|
Townsend PA, Scarabelli TM, Davidson SM,
Knight RA, Latchman DS and Stephanou A: STAT-1 interacts with p53
to enhance DNA damage-induced apoptosis. J Biol Chem.
279:5811–5820. 2004. View Article : Google Scholar : PubMed/NCBI
|