Research progress of berberine mediated photodynamic therapy (Review)
- Authors:
- Ya-Wen An
- Hong-Tao Jin
- Bo Yuan
- Jian-Chun Wang
- Cheng Wang
- Han-Qing Liu
-
Affiliations: Central Laboratory, Shenzhen Samii Medical Center, Shenzhen, Guangdong 518118, P.R. China, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xicheng, Beijing 100050, P.R. China, Department of Neurology, Shenzhen Samii Medical Center, Shenzhen, Guangdong 518118, P.R. China - Published online on: March 8, 2021 https://doi.org/10.3892/ol.2021.12620
- Article Number: 359
-
Copyright: © An et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Rkein AM and Ozog DM: Photodynamic therapy. Dermatol Clin. 32:415–425. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chilakamarthi U and Giribabu L: Photodynamic therapy: Past, present and future. Chem Rec. 17:775–802. 2017. View Article : Google Scholar : PubMed/NCBI | |
Moy LS, Frost D and Moy S: Photodynamic therapy for photodamage, actinic keratosis, and acne in the cosmetic practice. Facial Plast Surg Clin North Am. 28:135–148. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ghorbani J, Rahban D, Aghamiri S, Teymouri A and Bahador A: Photosensitizers in antibacterial photodynamic therapy: An overview. Laser Ther. 27:293–302. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Jiang C, Figueiró Longo JP, Azevedo RB, Zhang H and Muehlmann LA: An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta Pharm Sin B. 8:137–146. 2018. View Article : Google Scholar : PubMed/NCBI | |
Abrahamse H and Hamblin MR: New photosensitizers for photodynamic therapy. Biochem J. 473:347–364. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kataoka H, Nishie H, Hayashi N, Tanaka M, Nomoto A, Yano S and Joh T: New photodynamic therapy with next-generation photosensitizers. Ann Transl Med. 5:1832017. View Article : Google Scholar : PubMed/NCBI | |
Mansoori B, Mohammadi A, Amin Doustvandi M, Mohammadnejad F, Kamari F, Gjerstorff MF, Baradaran B and Hamblin MR: Photodynamic therapy for cancer: Role of natural products. Photodiagnosis Photodyn Ther. 26:395–404. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ortiz LM, Lombardi P, Tillhon M and Scovassi AI: Berberine, an epiphany against cancer. Molecules. 19:12349–12367. 2014. View Article : Google Scholar : PubMed/NCBI | |
Neag MA, Mocan A, Echeverria J, Pop RM, Bocsan CI, Crişan G and Buzoianu AD: Berberine: Botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front Pharmacol. 9:5572018. View Article : Google Scholar : PubMed/NCBI | |
Feng X, Sureda A, Jafari S, Memariani Z, Tewari D, Annunziata G, Barrea L, Hassan STS, Šmejkal K, Malaník M, et al: Berberine in cardiovascular and metabolic diseases: From mechanisms to therapeutics. Theranostics. 9:1923–1951. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu D, Meng X, Wu D, Qiu Z and Luo H: A natural isoquinoline alkaloid with antitumor activity: Studies of the biological activities of berberine. Front Pharmacol. 10:92019. View Article : Google Scholar : PubMed/NCBI | |
Philogène BJ, Arnason JT, Towers GH, Abramowski Z, Campos F, Champagne D and McLachlan D: Berberine: A naturally occurring phototoxic alkaloid. J Chem Ecol. 10:115–123. 1984. View Article : Google Scholar : PubMed/NCBI | |
Wang MX, Huo LM, Yang HC, Gao YJ and E Z: An experimental study on the photodynamic activity of berberine in vitro on cancer cells. J Tradit Chin Med. 6:125–127. 1986.PubMed/NCBI | |
Liu HQ, An YW, Hu AZ, Li MH and Cui GH: Photodynamic therapy enhanced the antitumor effects of berberine on HeLa cells. Open Chemistry. 17:413–421. 2019. View Article : Google Scholar | |
Liu H, Zheng T, Zhou Z, Hu A, Li M, Zhang Z, Yu G, Feng H, An Y, Peng J and Chen Y: Berberine nanoparticles for promising sonodynamic therapy of a HeLa xenograft tumour. Rsc Advances. 9:10528–10535. 2019. View Article : Google Scholar | |
Acamovic T and Brooker JD: Biochemistry of plant secondary metabolites and their effects in animals. Proc Nutr Soc. 64:403–412. 2005. View Article : Google Scholar : PubMed/NCBI | |
Schreiner M, Mewis I, Huyskens-Keil S, Jansen MAK, Zrenner R, Winkler JB, O'Brien N and Krumbein A: UV-B-induced secondary plant metabolites-potential benefits for plant and human health. Crit Rev Plant Sci. 31:229–240. 2012. View Article : Google Scholar | |
Gismondi A, Marco GD, Canuti L and Canini A: Antiradical activity of phenolic metabolites extracted from grapes of white and red Vitis vinifera L. cultivars. Vitis J Grapevine Res. 56:19–26. 2017. | |
Makkar HPS, Siddhuraju P and Becker K: Plant Secondary Metabolites. Humana Press; Totowa, NJ, USA: 2007, View Article : Google Scholar | |
Lockwood B: Plant Secondary Metabolites Occurrence, Structure and Role in the Human Diet. Crozier A, Clifford MN and Ashihara H: Blackwell Publishing Ltd; pp. 384GBP 99.50, ISBN 13: 978-1-4051-2509-3. Phytochemistry. 69. pp. 1288. 2008, View Article : Google Scholar | |
Steglich W: Plant Secondary Metabolites. Occurrence, Structure and Role in the Human Diet. Alan Crozier, Clifford MN and Ashihara H: Angewandte Chemie International Edition. 46. pp. 8113–8114. 2007, View Article : Google Scholar | |
Crozier A, Clifford MN and Ashihara H: Plant Secondary Metabolites: Occurrence Structure and Role in the Human Diet. Blackwell Publishing Ltd; UK: 2006 | |
Agarwal R, Zaidi SI, Athar M, Bickers DR and Mukhtar H: Photodynamic effects of chloroaluminum phthalocyanine tetrasulfonate are mediated by singlet oxygen: In vivo and in vitro studies utilizing hepatic microsomes as a model membrane source. Arch Biochem Biophys. 294:30–37. 1992. View Article : Google Scholar : PubMed/NCBI | |
Arnason JT, Guerin B, Kraml MM, Mehta B, Redmond RW and Scaiano JC: Phototoxic and photochemical properties of sanguinarine. Photochem Photobiol. 55:35–38. 1992. View Article : Google Scholar : PubMed/NCBI | |
Inbaraj JJ, Kukielczak BM, Bilski P, Sandvik SL and Chignell CF: Photochemistry and photocytotoxicity of alkaloids from Goldenseal (Hydrastis canadensis L.) 1. Berberine. Chem Res Toxicol. 14:1529–1534. 2001. View Article : Google Scholar : PubMed/NCBI | |
Brezová V, Dvoranova D and Kost'alova D: Oxygen activation by photoexcited protoberberinium alkaloids from Mahonia aquifolium. Phytother Res. 18:640–646. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cheng LL, Wang M, Zhu H, Li K, Zhu RR, Sun XY, Yao SD, Wu QS and Wang SL: Characterization of the transient species generated by the photoionization of Berberine: A laser flash photolysis study. Spectrochim Acta A Mol Biomol Spectrosc. 73:955–959. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hackbarth S, Islam W, Fang J, Šubr V, Röder B, Etrych T and Maeda H: Singlet oxygen phosphorescence detection in vivo identifies PDT-induced anoxia in solid tumors. Photochem Photobiol Sci. 18:1304–1314. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dmitrieva VA, Tyutereva EV and Voitsekhovskaja OV: Singlet oxygen in plants: Generation, detection, and signaling roles. Int J Mol Sci. 21:32372020. View Article : Google Scholar | |
Jantová S, Letasiova S, Brezova V, Cipak L and Labaj J: Photochemical and phototoxic activity of berberine on murine fibroblast NIH-3T3 and Ehrlich ascites carcinoma cells. J Photochem Photobiol B. 85:163–176. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cheng L, Wang M, Zhao P, Zhu H, Zhu R, Sun X, Yao S and Wang S: The examination of berberine excited state by laser flash photolysis. Spectrochim Acta A Mol Biomol Spectrosc. 73:268–272. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cheng LL, Wang M, Wu MH, Yao SD, Jiao Z and Wang SL: Interaction mechanism between berberine and the enzyme lysozyme. Spectrochim Acta A Mol Biomol Spectrosc. 97:209–214. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shen L and Ji HF: The mechanisms of ROS-photogeneration by berberine, a natural isoquinoline alkaloid. J Photochem Photobiol B. 99:154–156. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu R and Zhang Y: Mechanism of UV-driven photoelectrocatalytic degradation of berberine chloride form using the ESR Spin-trapping method. Photochem Photobiol. 94:650–658. 2018. View Article : Google Scholar : PubMed/NCBI | |
Görner H, Miskolczy Z, Megyesi M and Biczok L: Photooxidation of alkaloids: Considerable quantum yield enhancement by rose bengal-sensitized singlet molecular oxygen generation. Photochem Photobiol. 87:1315–1320. 2011. View Article : Google Scholar : PubMed/NCBI | |
Görner H, Miskolczy Z, Megyesi M and Biczok L: Photoreduction and ketone-sensitized reduction of alkaloids. Photochem Photobiol. 87:284–291. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hirakawa K, Kawanishi S and Hirano T: The mechanism of guanine specific photooxidation in the presence of berberine and palmatine: Activation of photosensitized singlet oxygen generation through DNA-binding interaction. Chem Res Toxicol. 18:1545–1552. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chen XW, Di YM, Zhang J, Zhou ZW, Li CG and Zhou SF: Interaction of herbal compounds with biological targets: A case study with berberine. ScientificWorldJournal. 2012:7082922012. View Article : Google Scholar : PubMed/NCBI | |
Hirakawa K and Hirano T: The microenvironment of DNA switches the activity of singlet oxygen generation photosensitized by berberine and palmatine. Photochem Photobiol. 84:202–208. 2008.PubMed/NCBI | |
Hirakawa K, Hirano T, Nishimura Y, Arai T and Nosaka Y: Dynamics of singlet oxygen generation by DNA-binding photosensitizers. J Phys Chem B. 116:3037–3044. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jiang D and Rusling JF: Oxidation chemistry of DNA and p53 tumor suppressor gene. ChemistryOpen. 8:252–265. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cheng LL, Wang YJ, Huang DH, Yao SD, Ding GJ, Wang SL and Jiao Z: Radiolysis and photolysis studies on active transient species of berberine. Spectrochim Acta A Mol Biomol Spectrosc. 124:670–676. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Xiao Q, Zhang N, Xue C, Leung AW, Zhang H, Tang QJ and Xu C: Palmatine hydrochloride mediated photodynamic inactivation of breast cancer MCF-7 cells: Effectiveness and mechanism of action. Photodiagnosis Photodyn Ther. 15:133–138. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bhattacharyya R, Gupta P, Bandyopadhyay SK, Patro BS and Chattopadhyay S: Coralyne, a protoberberine alkaloid, causes robust photosenstization of cancer cells through ATR-p38 MAPK-BAX and JAK2-STAT1-BAX pathways. Chem Biol Interact. 285:27–39. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Xiao Q, Zhang N, Xue C, Leung AW, Zhang H, Xu C and Tang QJ: Photodynamic action of palmatine hydrochloride on colon adenocarcinoma HT-29 cells. Photodiagnosis Photodyn Ther. 15:53–58. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qi F, Sun Y, Lv M, Qin F, Cao W and Bi L: Effects of palmatine hydrochloride mediated photodynamic therapy on oral squamous cell carcinoma. Photochem Photobiol Sci. 18:1596–1605. 2019. View Article : Google Scholar : PubMed/NCBI | |
Patro BS, Bhattacharyya R, Gupta P, Bandyopadhyay S and Chattopadhyay S: Mechanism of coralyne-mediated DNA photo-nicking process. J Photochem Photobiol B. 194:140–148. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ihmels H and Salbach A: Efficient photoinduced DNA damage by coralyne. Photochem Photobiol. 82:1572–1576. 2006. View Article : Google Scholar : PubMed/NCBI | |
Basu A, Jaisankar P and Kumar GS: Photophysical and calorimetric studies on the binding of 9-O-substituted analogs of the plant alkaloid berberine to double stranded poly(A). J Photochem Photobiol B. 125:105–114. 2013. View Article : Google Scholar : PubMed/NCBI | |
Basu A, Jaisankar P and Suresh Kumar G: Synthesis of novel 9-O-N-aryl/aryl-alkyl amino carbonyl methyl substituted berberine analogs and evaluation of DNA binding aspects. Bioorg Med Chem. 20:2498–2505. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Liu S, Wang Y, Wang S, Zhang J, Li S, Qin X, Li X, Wang K and Zhou Q: Synthesis, cytotoxicity, and DNA-binding property of berberine derivatives. Med Chemistry Res. 23:1899–1907. 2014. View Article : Google Scholar | |
Molero ML, Hazen MJ and Stockert JC: Photodynamic effect of berberine sulfate on the growth rate of allium cepa roots. J Plant Physiol. 120:91–94. 1985. View Article : Google Scholar | |
Lee NK, Jenner L, Harney A and Cameron J: Pharmacotherapy for amphetamine dependence: A systematic review. Drug Alcohol Depend. 191:309–337. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lee MMS, Zheng L, Yu B, Xu W, Kwok RTK, Lam JWY, Xu F, Wang D and Tang BZ: A highly efficient and AIE-active theranostic agent from natural herbs. Materials Chemistry Front. 3:1454–1461. 2019. View Article : Google Scholar | |
Ma XQ, Liu HL, Cheng GP, Yuan SC and Liang B: Effects of berberine combined with photodynamic on apoptosis of gastric cancer MGC-803 Cell. Chin J Clin Pharmacol Therapeutics. 20:961–966. 2015. | |
Chen KT, Hao DM, Liu ZX, Chen YC and You ZS: Effect of berberine alone or in combination with argon ion laser treatment on 9L rat glioma cell line. Chin Med J (Engl). 107:808–812. 1994.PubMed/NCBI | |
Lopes TZ, de Moraes FR, Tedesco AC, Arni RK, Rahal P and Calmon MF: Berberine associated photodynamic therapy promotes autophagy and apoptosis via ROS generation in renal carcinoma cells. Biomed Pharmacother. 123:1097942020. View Article : Google Scholar : PubMed/NCBI | |
Warowicka A, Popenda Ł, Bartkowiak G, Musidlak O, Litowczenko-Cybulska J, Kuźma D, Nawrot R, Jurga S and Goździcka-Józefiak A: Protoberberine compounds extracted from Chelidonium majus L. as novel natural photosensitizers for cancer therapy. Phytomedicine. 64:1529192019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Liu Y, Du X, Ma H and Yao J: The anti-cancer mechanisms of berberine: A review. Cancer Manag Res. 12:695–702. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu HQ, An YW, Li ZW, Li WX, Yuan B, Wang JC, Jin HT and Wang C: Sinoporphyrin sodium, a novel sensitizer for photodynamic and sonodynamic therapy. Open Chemistry. 18:691–701. 2020. View Article : Google Scholar | |
An YW, Liu HQ, Zhou ZQ, Wang JC, Jiang GY, Li ZW, Wang F and Jin HT: Sinoporphyrin sodium is a promising sensitizer for photodynamic and sonodynamic therapy in glioma. Oncol Rep. 44:1596–1604. 2020.PubMed/NCBI | |
Wang X, He L, Liu B and Wang J: Spectroscopic investigation on the sonodynamic damage to proteins in the presence of berberine in vitro. J Luminescence. 131:1361–1367. 2011. View Article : Google Scholar | |
Geng C, Zhang Y, Hidru TH, Zhi L, Tao M, Zou L, Chen C, Li H and Liu Y: Sonodynamic therapy: A potential treatment for atherosclerosis. Life Sci. 207:304–313. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tian Y and Guo S: Sonodynamic effect of berberine on macrophages. Heart. 98:E87–E88. 2012. | |
Kou JY, Li Y, Zhong ZY, Jiang YQ, Li XS, Han XB, Liu ZN, Tian Y and Yang LM: Berberine-sonodynamic therapy induces autophagy and lipid unloading in macrophage. Cell Death Dis. 8:e25582017. View Article : Google Scholar : PubMed/NCBI | |
Sun HW and Ouyang WQ: Preparation and physicochemical characteristics of berberine hydrochloric nanoemulsion. Chin Traditional Herbal Drugs. 38:1476–1480. 2007. | |
Song J, Lin C, Yang X, Xie Y, Hu P, Li H, Zhu W and Hu H: Mitochondrial targeting nanodrugs self-assembled from 9-O-octadecyl substituted berberine derivative for cancer treatment by inducing mitochondrial apoptosis pathways. J Control Release. 294:27–42. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fan JX, Liu MD, Li CX, Hong S, Zheng DW, Liu XH, Chen S, Cheng H and Zhang XZ: A metal-semiconductor nanocomposite as an efficient oxygen-independent photosensitizer for photodynamic tumor therapy. Nanoscale Horiz. 2:349–355. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Dai C, Hu Z, Li H, Yu L, Lin H, Bai J and Chen Y: Photonic cancer nanomedicine using the near infrared-II biowindow enabled by biocompatible titanium nitride nanoplatforms. Nanoscale Horiz. 4:415–425. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhen W, Liu Y, Jia X, Wu L, Wang C and Jiang X: Reductive surfactant-assisted one-step fabrication of a BiOI/BiOIO3 heterojunction biophotocatalyst for enhanced photodynamic theranostics overcoming tumor hypoxia. Nanoscale Horiz. 4:720–726. 2019. View Article : Google Scholar | |
Zhang D, Zhang J, Li Q, Tian H, Zhang N, Li Z and Luan Y: pH- and enzyme-sensitive IR820-paclitaxel conjugate self-assembled nanovehicles for near-infrared fluorescence imaging-guided chemo-photothermal therapy. ACS Appl Mater Interfaces. 10:30092–30102. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhang D, Li Q, Jiang Y, Song A, Li Z and Luan Y: Task-specific design of immune-augmented nanoplatform to enable high-efficiency tumor immunotherapy. ACS Appl Mater Interfaces. 11:42904–42916. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rajpoot K: Solid lipid nanoparticles: A promising nanomaterial in drug delivery. Curr Pharm Des. 25:3943–3959. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hou J and Zhou SW: Optimization of the preparation technology of berberine hydrochloride solid lipid nanoparticles by orthogonal experiment. China Pharmacy. 19:1150–1152. 2008. | |
Wang Y, Zheng J, Xu B, Wang H, Deng Y and Bi D: Determination of entrapment efficiency of berberine hydrochloride solid lipid nanoparticles by coagulation-centrifuge method. J Zhengzhou Univ (Med Ences). 44:188–189. 2009. | |
Elhissi A: Liposomes for pulmonary drug delivery: The role of formulation and inhalation device design. Curr Pharm Des. 23:362–372. 2017. View Article : Google Scholar : PubMed/NCBI | |
Luo X, Li J, Guo L, Cheng X, Zhang T and Deng Y: Preparation of berberine hydrochloride long-circulating liposomes by ionophore A23187-mediated ZnSO4 gradient method. Asian J Pharmaceutical Ences. 8:261–266. 2013. View Article : Google Scholar | |
Chen J, Tian L, Li W and Li G: Study on the preparation process of berberine hydrochloride liposomes by orthogonal design. J Practical Med Techniques. 14:1868–1870. 2007. | |
Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G and Dhawan S: PLGA: A unique polymer for drug delivery. Ther Deliv. 6:41–58. 2015. View Article : Google Scholar : PubMed/NCBI | |
Khan I, Joshi G, Nakhate KT, Ajazuddin, Kumar R and Gupta U: Nano-Co-delivery of berberine and anticancer drug using PLGA nanoparticles: Exploration of better anticancer activity and in vivo kinetics. Pharm Res. 36:1492019. View Article : Google Scholar : PubMed/NCBI | |
Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, Wang H, Wan J, Wang X and Lu Z: Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 5:811–818. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guo HH, Feng CL, Zhang WX, Luo ZG, Zhang HJ, Zhang TT, Ma C, Zhan Y, Li R, Wu S, et al: Liver-target nanotechnology facilitates berberine to ameliorate cardio-metabolic diseases. Nat Commun. 10:19812019. View Article : Google Scholar : PubMed/NCBI | |
Bhatnagar P, Kumari M, Pahuja R, Pant AB, Shukla Y, Kumar P and Gupta KC: Hyaluronic acid-grafted PLGA nanoparticles for the sustained delivery of berberine chloride for an efficient suppression of Ehrlich ascites tumors. Drug Deliv Transl Res. 8:565–579. 2018. View Article : Google Scholar : PubMed/NCBI | |
Grebinyk A, Prylutska S, Buchelnikov A, Tverdokhleb N, Grebinyk S, Evstigneev M, Matyshevska O, Cherepanov V, Prylutskyy Y, Yashchuk V, et al: C60 fullerene as an effective nanoplatform of alkaloid berberine delivery into leukemic cells. Pharmaceutics. 11:5862019. View Article : Google Scholar |