1
|
Han K and Kim JH: Transarterial
chemoembolization in hepatocellular carcinoma treatment: Barcelona
clinic liver cancer staging system. World J Gastroenterol.
21:10327–10335. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Sakisaka M, Haruta M, Komohara Y, Umemoto
S, Matsumura K, Ikeda T, Takeya M, Inomata Y, Nishimura Y and Senju
S: Therapy of primary and metastatic liver cancer by human iPS
cell-derived myeloid cells producing interferon-β. J Hepatobiliary
Pancreat Sci. 24:109–119. 2017. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Omata M, Cheng AL, Kokudo N, Kudo M, Lee
JM, Jia J, Tateishi R, Han KH, Chawla YK, Shiina S, et al:
Asia-Pacific clinical practice guidelines on the management of
hepatocellular carcinoma: A 2017 update. Hepatol Int. 11:317–370.
2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wei SC, Levine JH, Cogdill AP, Zhao Y,
Anang NAS, Andrews MC, Sharma P, Wang J, Wargo JA, Pe'er D, et al:
Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1
checkpoint blockade. Cell. 170:1–14. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Waidmann O: Recent developments with
immunotherapy for hepatocellular carcinoma. Expert Opin Biol Ther.
18:905–910. 2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Butterfield LH, Ribas A, Potter DM and
Economou JS: Spontaneous and vaccine induced AFP-specific T cell
phenotypes in subjects with AFP-positive hepatocellular cancer.
Cancer Immunol Immunother. 56:1931–1943. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Qin Y and Liao P: Hepatitis B virus
vaccine breakthrough infection: Surveillance of S gene mutants of
HBV. Acta Virol. 62:115–121. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Li Z, Ding J, Zhao X and Qi G: Combination
therapy of hepatocellular carcinoma by DNA shuffling-based VEGF
vaccine and doxorubicin. Immunotherapy. 10:951–969. 2018.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Huang F, Chen J, Lan R, Wang Z, Chen R,
Lin J, Zhang L and Fu L: δ-Catenin peptide vaccines repress
hepatocellular carcinoma growth via CD8+ T cell
activation. Oncoimmunology. 7:e14507132018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Han Q, Wang Y, Pang M and Zhang J:
STAT3-blocked whole-cell hepatoma vaccine induces cellular and
humoral immune response against HCC. J Exp Cancer Res. 36:1562017.
View Article : Google Scholar
|
11
|
Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J,
Bozym DJ, Zhang W, Luoma A, Giobbie-Hurder A, Peter L, et al: An
immunogenic personal neoantigen vaccine for patients with melanoma.
Nature. 547:217–221. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Sahin U, Derhovanessian E, Miller M, Kloke
BP, Simon P, Löwer M, Bukur V, Tadmor AD, Luxemburger U, Schrörs B,
et al: Personalized RNA mutanome vaccines mobilize poly-specific
therapeutic immunity against cancer. Nature. 547:222–226. 2017.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Buonaguro L, Petrizzo A, Tagliamonte M,
Tornesello ML and Buonaguro FM: Challenges in cancer vaccine
development for hepatocellular carcinoma. J Hepatol. 59:897–903.
2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sun Z, Zhu Y, Xia J, Sawakami T, Kokudo N
and Zhang N: Status of and prospects for cancer vaccines against
hepatocellular carcinoma in clinical trials. BioScience Trends.
10:85–91. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Petrizzo A, Tagliamonte M, Mauriello A,
Costa V, Aprile M, Esposito R, Caporale A, Luciano A, Arra C, Arra
C, et al: Unique true predicted neoantigens (TPNAs) correlates with
anti-tumor immune control in HCC patients. J Transl Med.
16:2862018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Hu Z, Chen J, Zhou S, Yang N, Duan S,
Zhang Z, Su J, He J, Zhang Z, Lu X and Zhao Y: Mouse IP-10 gene
delivered by folate-modified chitosan nanoparticles and
dendritic/tumor cells fusion vaccine effectively inhibit the growth
of hepatocellular carcinoma in mice. Theranostics. 7:1942–1952.
2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Végran F, Apetoh L and Ghiringhelli F: Th9
cells: A novel CD4 T-cell subset in the immune war against cancer.
Cancer Res. 75:475–479. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Vargas TR, Humblin E, Végran F,
Ghiringhelli F and Apetoh L: Th9 cells in anti-tumor immunity.
Semin Immunopathol. 39:39–46. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chauhan SR, Singhal PG, Sharma U, Bandil
K, Chakraborty K and Bharadwaj M: Th9 cytokines curb cervical
cancer progression and immune evasion. Hum Immunol. 80:1020–1025.
2019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Salazar Y, Zheng X, Brunn D, Raifer H,
Picard F, Zhang Y, Winter H, Guenther S, Weigert A, Weigmann B, et
al: Microenvironmental Th9 and Th17 lymphocytes induce metastatic
spreading in lung cancer. J Clin Invest. 130:3560–3575. 2020.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Purwar R, Schlapbach C, Xiao S, Kang HS,
Elyaman W, Jiang X, Jetten AM, Khoury SJ, Fuhlbrigge RC, Kuchroo
VK, et al: Robust tumor immunity to melanoma mediated by
interleukin-9-producing T cells. Nature Medicine. 18:1248–1253.
2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lu Y, Hong S, Li H, Park J, Hong B, Wang
L, Zheng Y, Liu Z, Xu J, He J, et al: Th9 cells promote antitumor
immune responses in vivo. J Clin Invest. 11:4160–4171. 2012.
View Article : Google Scholar
|
23
|
Vegran F, Martin F, Apetoh L and
Ghiringhelli F: Th9 cells: A new population of helper T cells. Med
Sci (Paris). 32:387–393. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Rivera Vargas T, Cai Z, Shen Y, Dosset M,
Benoit-Lizon I, Martin T, Roussey A, Flavell RA, Ghiringhelli F and
Apetoh L: Selective degradation of PU.1 during autophagy represses
the differentiation and antitumour activity of Th9 cells. Nat
Commun. 8:5592017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Tamiya T, Ichiyama K, Kotani H, Fukaya T,
Sekiya T, Shichita T, Honma K, Yui K, Matsuyama T, Nakao T, et al:
Smad2/3 and IRF4 play a cooperative role in IL-9-producing T cell
induction. J Immunol. 191:2360–2371. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Veldhoen M, Uyttenhove C, van Snick J,
Helmby H, Westendorf A, Buer J, Martin B, Wilhelm C and Stockinger
B: Transforming growth factor-beta ‘reprograms’ the differentiation
of T helper 2 cells and promotes an interleukin 9-producing subset.
Nat Immunol. 9:1341–1346. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Abdelaziz MH, Wang H, Cheng J and Xu H:
Th2 cells as an intermediate for the differentiation of naïve T
cells into Th9 cells, associated with the Smad3/Smad4 and IRF4
pathway. Exp Ther Med. 19:1947–1954. 2020.PubMed/NCBI
|
28
|
Chandwaskar R and Awasthi A: Emerging
roles of Th9 cells as an anti-tumor helper T cells. Int Rev
Immunol. 38:204–211. 2019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Jiang Y, Chen J, Bi E, Zhao Y, Qin T, Wang
Y, Wang A, Gao S, Yi Q and Wang S: TNF-α enhances Th9 cell
differentiation and antitumor immunity via TNFR2-dependent
pathways. J Immunother Cancer. 7:282019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Fang Y, Chen X, Bai Q, Qin C, Mohamud AO,
Zhu Z, Ball TW, Ruth CM, Newcomer DR, Herrick EJ and Nicholl MB:
IL-9 inhibits HTB-72 melanoma cell growth through upregulation of
p21 and TRAIL. J Surg Oncol. 111:969–974. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Abdul-Wahid A, Cydzik M, Prodeus A, Alwash
M, Stanojcic M, Thompson M, Huang EH, Shively JE, Gray-Owen SD and
Gariépy J: Induction of antigen-specific TH9 immunity accompanied
by mast cell activation blocks tumor cell engraftment. Int J
Cancer. 139:841–853. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhao Y, Chu X, Chen J, Wang Y, Gao S,
Jiang Y, Zhu X, Tan G, Zhao W, Yi H, et al: Dectin-1-activated
dendritic cells trigger potent antitumour immunity through the
induction of Th9 cells. Nat Commun. 7:123682016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kim S, Zhang Y, Tang S, Qin C, Karelia D,
Sharma A, Jiang C and Lu J: Optimizing live-animal bioluminescence
imaging prediction of tumor burden in human prostate cancer
xenograft models in SCID-NSG mice. Prostate. 79:949–960. 2019.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real time quantitative PCR and
the 2(-Delta Delta CT) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Papaioannou NE, Beniata OV, Vitsos P,
Tsitsilonis O and Samara P: Harnessing the immune system to improve
cancer therapy. Ann Transl Med. 4:2612016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Copier J and Dalgleish A: Whole-cell
vaccines: A failure or a success waiting to happen? Curr Opin Mol
Ther. 12:14–20. 2010.PubMed/NCBI
|
37
|
Damo M, Wilson DS, Simeoni E and Hubbell
JA: TLR-3 stimulation improves anti-tumor immunity elicited by
dendritic cell exosome-based vaccines in a murine model of
melanoma. Sci Rep. 5:176222015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Liu P, Chen L and Zhang H: Natural killer
cells in liver disease and hepatocellular carcinoma and the NK
cell-based immunotherapy. J Immunol Res. 4:12067372018.
|
39
|
Tan H, Wang S and Zhao L: A
tumour-promoting role of Th9 cells in hepatocellular carcinoma
through CCL20 and STAT3 pathways. Clin Exp Pharmacol Physiol.
44:213–221. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Qin SY, Lu DH, Guo XY, Luo W, Hu BL, Huang
XL, Chen M, Wang JX, Ma SJ, Yang XW, et al: A deleterious role for
Th9/IL-9 in hepatic fibrogenesis. Sci Rep. 6:186942016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Cui M, Lv Y, Lu J, Zhang W, Duan Y, Huang
Y, Yang L, Li M, Liu W, Liu D and Yan H: Decreased frequency of
circulating Th9 cells in patients with chronic hepatitis B
infection. J Clin Lab Anal. 32:e222462018. View Article : Google Scholar
|
42
|
Yu X, Zheng Y, Deng Y, Li J, Guo R, Su M,
Ming D, Lin Z, Zhang J and Su Z: Serum Interleukin (IL)-9 and
IL-10, but not T-Helper 9 (Th9) cells, are associated with survival
of patients with acute-on-chronic hepatitis b liver failure.
Medicine (Baltimore). 95:e34052016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Chen T, Guo J, Cai Z, Li B, Sun L, Shen Y,
Wang S, Wang Z, Wang Z, Wang Z, et al: Th9 cell differentiation and
its dual effects in tumor development. Front Immunol. 11:10262020.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Chen W, Jin W, Hardegen N, Lei KJ, Li L,
Marinos N, McGrady G and Wahl SM: Conversion of peripheral
CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta
induction of transcription factor Foxp3. J Exp Med. 198:1875–1886.
2003. View Article : Google Scholar : PubMed/NCBI
|
45
|
Sundrud MS and Hogan SP: What's old is new
again: BATF transcription factors and Th9 cells. Mucosal Immunol.
12:583–585. 2019. View Article : Google Scholar : PubMed/NCBI
|